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Abstract. The gauge dependence of the time-ordered products for Yang–Mills theories is
analysed in perturbation theory by means of the causal method of Epstein and Glaser together
with perturbative gauge invariance. This approach allows a simple inductive proof of the gauge
independence of the physicalS-matrix.

1. Introduction

The properties of (quantum) gauge invariance and gauge-parameter independence, which
are inherent in all kinds of gauge theories, have always been of great interest. In the
calculation of physical observables, i.e.S-matrix elements, the question of gauge parameter
independence arises automatically. In the usual Lagrangian approach to quantum field
theory, the gauge invariance of the classical Lagrangian has to be broken in order to quantize
the theory. Therefore, gauge fixing terms which depend on free gauge parameters are added
to the Lagrangian. The theory then still has Becchi, Rouet and Stora (BRS) invariance [1].
The gauge parameters drop out inS-matrix elements between physical states. But Green
functionsare gauge dependent in general. On the other hand, it can be shown that Green
functions of the special class of gauge invariant operators are independent of the method of
gauge fixing and so gauge-parameter independent [2].

In fact, the crucial property of gauge theories which allowed us to show the gauge
independence of physicalS-matrix elements by path-integral methods is BRS invariance,
holding for arbitrary gauge parameters. BRS invariance implies generalized Ward–Takahashi
identities first proved by Slavnov and Taylor [3, 4]. One considers then the generating
functionalWλ(J ) of the theory, whereλ is a gauge parameter andJ the external source
coupled to a physical field (e.g. a gauge or quark field). Changing the gauge parameterλ

by an infinitesimal amount dλ and using the Slavnov–Taylor identities, the desired result
can easily be derived [5].

The property of gauge-parameter independence has also recently gained renewed interest
in practical problems. For example, the introduction of running couplings can only be
achieved by a resummation of certain subsets of Feynman diagrams [6–8] and it is then
necessary to define a general procedure for maintaining the gauge independence of the
theory. Of course, the significance of such resummed objects is always questionable.
Furthermore, the problem has also been discussed in the framework of the background-
field model for the electroweak standard model [9].
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It is the aim of this paper to describe the situation from a totally different point of
view for the example of pure Yang–Mills theory, without making reference to path-integral
methods. Some years ago, some of us [10, 11] began to advocate the causal approach to
perturbative quantum field theory, which goes back to a classical paper by Epstein and
Glaser [12]. No ultraviolet divergences and only well-defined objects (no interacting fields)
appear in this approach. Meanwhile, the method has been applied successfully to full
Yang–Mills and massive theories as the electroweak standard model [13].

In the causal approach, theS-matrix is viewed as an operator-valued distribution of the
following form:

S(g) = 1+
∞∑
n=1

1

n!

∫
dx1 . . .dxn Tn(x1, . . . , xn)g(x1) · . . . g(xn) (1.1)

whereg ∈ S, the Schwartz space of functions of rapid decrease. TheTn are well-defined
time-ordered products of the first-order interactionT1, which specifies the theory. For
example, for QCD without matter fields one has

T1(x) = igfabc{ 12 : Aµa(x)Aνb(x)F
νµ
c (x) : − : Aµa(x)ub(x)∂

µũc(x) :} (1.2)

whereFνµa = ∂νAνa − ∂µAνa is the free field strength tensor andua, ũa are the (fermionic)
ghost fields. The asymptotic free fields satisfy the well known commutation relations

[A(±)µ (x), A(∓)ν (y)] = igµνD(∓)(x − y)+ i
1− λ
λ

(∂µ∂νE)
(∓)(x − y) (1.3)

in the so-calledλ-gauges, and

{u(±)(x), ũ(∓)(y)} = −iD(∓)(x − y) (1.4)

whereD andE will be defined below and all other (anti-)commutators vanish. (For the
generalization to the massive case see [14].) The introduction of ghost fields is necessary
already at first order to preserve perturbative quantum gauge invariance, which we are going
to explain now. It can be written in our case by the help of an appropriately defined gauge
chargeQ:

Q := λ
∫

d3x ∂µA
µ(x)

↔
∂ 0u(x). (1.5)

This leads to the following gauge variations for the fields:

[Q,Aµ] = i∂µu [Q,Fµν ] = 0 {Q,u} = 0 {Q, ũ} = −iλ∂µA
µ. (1.6)

Obviously, these variations have a simpler structure than those in the BRS case. Perturbative
quantum gauge invariance is then expressed by the following condition:

[Q,Tn(x1, . . . xn)] = i
n∑
l=1

∂xlµ T
µ

n/l(x1, . . . xn) = (sum of divergences) (1.7)

whereT µn/l is a mathematically rigorous version of the time-ordered product

T
µ

n/l(x1, . . . , xn) ‘=’ T (T1(x1) . . . T
µ

1/1(xl) . . . T1(xn)) (1.8)

[Q,T1(x)] =: i∂νT
ν

1/1(x) (1.9)

constructed by means of the method of Epstein and Glaser. Note that the usual 4-gluon
term is missing inT1. This term is generated by quantum gauge invariance at second order
of perturbation theory.

The paper is organized as follows. In the next section we introduce the asymptotic
gauge fields in the covariantλ-gauges and discuss their relation for differentλ. Then in the
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third section we construct a concrete representation in momentum space which is useful for
certain computations in the next section. There we discuss the physical subspace and prove
gauge independence of the time-ordered products on the physical subspace. This result is a
consequence of gauge invariance for anyλ. The latter property is investigated in section 5.
Two appendices contain the technical details.

2. Asymptotic fields in covariantλ-gauges

We shall use asymptotic gauge fields satisfying the modified wave equation

�A(λ)µ = (1− λ)∂µ∂νA(λ)ν . (2.1)

Here λ is a real gauge parameter,λ = 1 corresponds to the Feynman gauge. We have
omitted colour indices etc which are unimportant in this section, only the Lorentz structure
matters here. The upper index(λ) indicates that the field corresponds to the gauge parameter
λ, and we are going to consider the fields with differentλ simultaneously.

First we want to solve the Cauchy problem for (2.1) with Cauchy data specified at time
t = 0 in the wholeR3. For this reason we isolate the highest time derivatives in (2.1)

λ∂2
0A

(λ)

0 = 4A(λ)0 + (1− λ)∂0∂
jA

(λ)
j (2.2)

∂2
0A

(λ)
j = 4A(λ)j + (1− λ)∂j (∂0A

(λ)

0 + ∂lA(λ)l ). (2.3)

Consequently, in agreement with the ordinary wave equation, the Cauchy data are given by
A(λ)µ (0,x) and(∂0A

(λ)
µ )(0,x). Taking the divergence∂µ of (2.1) we obtain forλ 6= 0

�∂µA(λ)µ = 0 (2.4)

so thatA(λ)µ satisfies the iterated wave equation

�2A(λ)µ = 0. (2.5)

The Cauchy problem for this equation is considered in the appendix. The solution can be
written in terms of the Lorentz invariant distributionsD(x) andE(x):

A(λ)µ (x) =
∫
y0=0

d3y D(x − y)
↔
∂
y

0A
(λ)
µ (y)+

∫
y0=0

d3y E(x − y)
↔
∂
y

0�A(λ)µ (y). (2.6)

Here, all second- and third-order time derivatives under the last integral must be expressed
by spatial derivatives of the Cauchy data by means of (2.2) and (2.3).

It is very important to note that the decomposition (2.6) is Lorentz covariant. Indeed,
instead of selecting the planey0 = 0 we may consider a smooth spacelike surfaceσ with a
surface measure dσν(y). Then, with the help of Gauss’ theorem, the integrals in (2.6) can
be written in invariant form∫

y0=0
d3y . . .

↔
∂ 0→

∫
σ

dσν(y) . . .
↔
∂ ν

showing that each term on the r.h.s. of (2.6) is a Lorentz four-vector.
Let us denote the first term in (2.6) which satisfies the ordinary wave equation byAwµ(x)

(w stands for wave). The second term denoted byBµ is equal to

Bµ(x) = (1− λ)
∫

d3y E(x − y)
↔
∂ 0∂µ∂A

(λ)(y) (2.7)

where (2.1) has been inserted. Forµ = j = 1, 2, 3 the derivative can be taken out by
partial integration, so that

Bj(x) = ∂jχ(x) (2.8)
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is a spatial gradient with

χ(x) = (1− λ)
∫
y0=0

d3y E(x − y)
↔
∂ 0∂A

(λ)(y). (2.9)

However, this is impossible for the zeroth component

B0(x) = ∂0χ(x)+ B(x). (2.10)

The differenceB(x) can be transformed as follows

B(x) = (1− λ)
∫

d3y [E(x − y)
↔
∂ 0∂

y

0∂A
(λ)(y)− ∂x0E(x − y)

↔
∂ 0∂A

(λ)(y)]

= (1− λ)
∫

d3y ∂
y

0 [E(x − y)
↔
∂ 0∂A

(λ)(y)]

= (1− λ)
∫

d3y [∂y0E∂0∂A
(λ) + E∂2

0∂A
(λ) − ∂2

0yE∂A
(λ) − ∂y0E∂0∂A

(λ)]

= − (1− λ)
∫

d3y�E(x − y)∂A(λ)(y)

= − (1− λ)
∫

d3y D(x − y)∂νA(λ)ν (y). (2.11)

This shows that the fieldB(x) also fulfils the wave equation�B = 0. Therefore, it is
tempting to combine it withAw0 (x). The resulting four-component field

ALµ = (Aw0 + B,Aw1 , Aw2 , Aw3 ) (2.12)

satisfies the wave equation and we have the simple decomposition

A(λ)µ = ALµ + ∂µχ. (2.13)

However, this decomposition has the serious defect of not being covariant (see (2.12)).
Therefore, we must make a sharp distinction between the fieldALµ and thecovariant field
AFµ in the Feynman gaugeλ = 1, although both fields satisfy the wave equation and the
same commutation relation, as we shall see.

Next we want to quantize theA(λ)-field. It follows from (2.6) that the commutation
relations for arbitrary times must involve the distributionsD and E. Then, Poincaŕe
covariance and the singular orderω = −2 of the resulting distribution suggest the following
form

[A(λ)µ (x), A
(λ)
ν (y)] = igµνD(x − y)+ iα∂µ∂νE(x − y) (2.14)

where a common factor (h/2π ) has been set =1. When operating with�gκµ− (1−λ)∂κ∂µ
on the variablex, we must obtain zero. This determines the parameterα. Using
�E(x) = D(x), we find

[A(λ)µ (x), A
(λ)
ν (y)] = igµνD(x − y)+ i

1− λ
λ

∂µ∂νE(x − y). (2.15)

The corresponding commutation relations for the positive- and negative-frequency parts read
(see (1.3))

[A(λ)(−)µ (x), A(λ)(+)ν (y)] = igµνD
(+)(x − y)+ i

1− λ
λ

(∂µ∂νE)
(+)(x − y). (2.16)

Note that the positive-frequency part of the derivative(∂νE) is well defined, in contrast to
E(+).
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From the initial values of theD- andE-distributions

D(0,x) = 0 (∂0D)(0,x) = δ3(x) (2.17)

(∂n0E)(0,x) = 0 n = 0, 1, 2 (∂3
0E)(0,x) = δ3(x) (2.18)

we obtain the equal-time commutation relations

[∂0A
(λ)
µ (x), A

(λ)
ν (y)]0 = igµν

(
1+ gµ0

1− λ
λ

)
δ(x− y) (2.19)

[∂0A
(λ)

0 (x), ∂0A
(λ)
j (y)]0 = i

λ− 1

λ
∂j δ(x− y) (2.20)

where the subscript 0 meansx0 = y0. All other commutators are zero. It follows from
(2.19) (2.20) that three-dimensional smearing with a space dependent test functionf (x) is
sufficient to obtain a well-defined operator in Fock space.

From the fundamental commutation relations (2.15) the commutators of all other fields
can be calculated because they are all expressed byA(λ)µ . We find

[χ(x), χ(y)] = 0 (2.21)

[Awj (x), A
w
k (y)] = igjkD(x − y) (2.22)

[Aw0 (x), A
w
0 (y)] =

i

λ
D(x − y) (2.23)

[ALµ(x), A
L
ν (y)] = igµνD(x − y). (2.24)

Now, Awj (x), j = 1, 2, 3 are the spatial components of a covariant vector field satisfying
the wave equation. The commutation relations (2.22) are the same as for the Feynman field
AFj (x). Nevertheless, we cannot identify the two as we shall see in the next section by
constructing a concrete representation of the field operators.

3. Concrete representation in momentum space

Most authors who consider theλ-gauges leave the construction of a concrete representation
to the reader. We try to be more polite to our readers.

Since three-dimensional smearing is enough to renderA(λ)µ (x) well defined, we will
construct all fields as three-dimensional Fourier integrals, leaving aside manifest Lorentz
covariance. Our strategy will be to start with a representation of the time-zero fields which
satisfies the equal-time commutation relations (2.19), (2.20) and then calculating the time
evolution by the formulae of section 2. We follow the somewhat unusual, but mathematically
more satisfactory procedure of assuming a Fock space withpositive definite metricand
changing the form of the zeroth componentA(λ)0 instead [10]. This is very natural in the
λ-gauge because the zeroth component plays a special role here, anyway.

We use the usual emission and absorption operators for all four components satisfying

[a(λ)ν (p), a
(λ)+
µ (q)] = δνµδ(p− q). (3.1)

The adjoint is defined with respect to the positive definite scalar product so that these
operators can be represented in the usual way in a Fock spaceF (λ), if smeared out with test
functionsf (p) ∈ L2(R3). In addition we will use the operators for the longitudinal mode

a
(λ)
‖ (p) =

pj

ω
a
(λ)
j (p) = −pj

ω
a
(λ)
j (p) (3.2)
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where alwaysω = |p| = p0. Introducing the linear combinations

b
(λ)

1 (p) = 1√
2
(a
(λ)
‖ (p)+ a(λ)0 (p))

b
(λ)

2 (p) = 1√
2
(a
(λ)
‖ (p)− a(λ)0 (p))

(3.3)

we have the following commutators

[b(λ)1 (p), b(λ)+2 (q)] = 0

[a(λ)ν (p), b
(λ)+
2 (q)] = − 1√

2

pν

ω
δ(p− q)

[a(λ)+ν (p), b(λ)1 (q)] = − 1√
2

pν

ω
δ(p− q).

(3.4)

In addition to the adjoint we have to introduce a second conjugationK which appears in all
Lorentz covariant expressions and defines the so-called Krein structure [17]. It is defined
by

a
(λ)

0 (p)K = −a(λ)0 (p)+ a
(λ)
j (p)K = a(λ)j (p)+ j = 1, 2, 3. (3.5)

Note thata(λ)µ , a
(λ)+
µ are not treated as four-vectors, therefore, we always write the indices

below.
The gauge fieldA(λ)µ (x) must be self-conjugatedA(λ)Kµ = A(λ)µ , in order to get a pseudo-

unitary S-matrix. Then, a little experimentation shows that the time-zero fields must be of
the following form:

A(λ)µ (0,x) = (2π)−3/2
∫

d3p√
2ω

{
a(λ)µ (p)e

ipx + a(λ)Kµ (p)e−ipx

− 1− λ
2
√

2λ

[
pµ

ω
b
(λ)

1 (p)eipx + pµ
ω
b
(λ)+
2 (p)e−ipx

−2gµ0b
(λ)

1 (p)eipx − 2gµ0b
(λ)+
2 (p)e−ipx

]}
(3.6)

(∂0A
(λ)
µ )(0,x) = −i(2π)−3/2

∫
d3p√

2ω

{
ωa(λ)µ (p)e

ipx − ωa(λ)Kµ (p)e−ipx

− 1− λ
2
√

2λ

[
− pµb(λ)1 (p)eipx + pµb(λ)+2 (p)e−ipx

−2gµ0ωb
(λ)

1 (p)eipx + 2gµ0ωb
(λ)+
2 (p)e−ipx

]}
. (3.7)

It is straightforward to verify the commutation relations (2.15), (2.19) and (2.20).
The fields for arbitrary times can now be found from (2.6). For this purpose we need

the following three-dimensional Fourier transforms (fory0 = 0)∫
d3y D(x − y)eipy = − i

2ω
(eiωx0 − e−iωx0

)eipx (3.8)∫
d3y E(x − y)eipy = −1

4ω2

[
eiωx0

(
x0+ i

ω

)
+ e−iωx0

(
x0− i

ω

)]
eipx. (3.9)

We first compute

(∂µA(λ)µ )(0,x) =
−i

λ
(2π)−3/2

∫
d3p
√
ω(b

(λ)

1 (p)eipx − b(λ)+2 (p)e−ipx) (3.10)
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(∂0∂
µA(λ)µ )(0,x) =

−√2

λ
(2π)−3/2

∫
d3p√

2ω
ω2(b

(λ)

1 (p)eipx + b(λ)+2 (p)e−ipx). (3.11)

Then we obtain from the first term in (2.6)

Awj (x) = (2π)−3/2
∫

d3p√
2ω
(a
(λ)
j (p)e−ipx + a(λ)+j (p)eipx)+ ∂jf (x) (3.12)

where

f (x) = −i
1− λ

4λ(2π)3/2

∫
d3p

ω3/2
[b(λ)1 (−p)eipx − b(λ)+2 (−p)e−ipx ].

The zeroth component behaves differently

Aw0 (x) = (2π)−3/2
∫

d3p√
2ω

[
a
(λ)

0 (p)e−ipx − a(λ)+0 (p)eipx

+1− λ√
2λ
(b
(λ)

1 (p)e−ipx + b(λ)+2 (p)eipx)

]
− 1− λ

2
√

2λ
(2π)−3/2

∫
d3p√

2ω
(b
(λ)

1 (−p)eipx + b(λ)+2 (−p)e−ipx). (3.13)

Next we calculateχ(x) from (2.9)

χ(x) = 1− λ√
2λ
(2π)−3/2

∫
d3p√

2ω

[
b
(λ)

1 (p)e−ipx

(
x0− i

2ω

)
+b(λ)+2 (p)eipx

(
x0+ i

2ω

)]
− f (x) (3.14)

andB(x) from (2.11)

B(x) = λ− 1√
2λ
(2π)−3/2

∫
d3p√

2ω
(b
(λ)

1 (p)e−ipx + b(λ)+2 (p)eipx)

−λ− 1√
2λ
(2π)−3/2

∫
d3p√

2ω
(b
(λ)

1 (−p)eipx + b(λ)+2 (−p)e−ipx). (3.15)

This cancels against the second line in (3.13) so that

A
(λ)

0 (x) = (2π)−3/2
∫

d3p√
2ω

[a(λ)0 (p)e−ipx − a(λ)+0 (p)eipx ] + ∂0(χ + f ). (3.16)

The first integral in (3.16) and (3.12) formally agrees with the Feynman fieldAFµ , but the
latter is defined by means of different annihilation and creation operatorsa(1)µ (p), a

(1)+
µ (p)

AFµ(x) = (2π)−3/2
∫

d3p√
2ω

[a(1)µ (p)e
−ipx + a(1)Kµ (p)eipx ]. (3.17)

In A(λ)µ the terms with wrong frequencies∼ b
(λ)

1 (−p) etc cancel out. Then the resulting

decompositionA(λ)µ = ÃLµ + ∂µχ̃ is identical to the one introduced by Lautrup [16].
Until now every fieldA(λ) operates in its own Fock spaceF (λ), but there must exist a

λ-independent intersection of theseF (λ) where the gauge-independent objects live. Indeed,
in the foregoing equations theλ-dependence is only through the unphysical scalar and
longitudinal modesb1, b2 (3.3), all equations involving only transverse modes which can
be written down contain noλ. Therefore, we can safely identify the transverse emission
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Figure 1. Relation between Fock spaces with different values of the gauge parameterλ.

and absorption operators for differentλ. Let εµ = (0, ε) andηµ = (0,η) be two transverse
polarization vectors

p · ε(p) = 0= p · η(p) ε2 = 1= η2 ε · η = 0. (3.18)

Then we put

εµa(λ)µ (p) = aε(p) ηµa(λ)µ (p) = aη(p) (3.19)

independent ofλ. Choosing one unique vacuum� for all field operators

aε(p)� = 0= aη(p)� = b(λ)1 (p)� = b(λ)2 (p)� = 0

for all p (or rather after smearing with test functionsf (p)), then the different Fock spaces
F (λ) hang together (figure 1). Their intersection is the physical subspaceHphys which is
spanned by the transverse states(a+ε )

m(a+η )
n�.

4. Gauge invariance and gauge independence

Now we come to the study of the nilpotent gauge chargeQλ (1.5)

Qλ = λ
∫

d3x ∂µA(λ)µ (x)
↔
∂ 0u(x) (4.1)

where the colour indices are always suppressed if the meaning is clear. The ghost fieldsu,
ũ are quantized as follows

�u = 0 �ũ = 0

{ua(x), ũb(y)} = −iδabD(x − y).
(4.2)

Since there is noλ-dependence here, they can be represented in the usual way

u(x) = (2π)−3/2
∫

d3p√
2ω
(c2(p)e

−ipx + c+1 (p)eipx) (4.3)

ũ(x) = (2π)−3/2
∫

d3p√
2ω
(−c1(p)e

−ipx + c+2 (p)eipx) (4.4)
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where

{ci(p), c+j (q)} = δij δ(p− q) i, j = 1, 2.

The conjugationK is extended to the ghost sector by

c2(p)
K = c1(p)

+ c1(p)
K = c2(p)

+ (4.5)

so thatuK = u isK self-adjoint andũK = −ũ. ThenQλ (4.1), if densely defined, becomes
K-symmetricQλ ⊂ QK

λ . It is not necessary for the following to give an explicit description
of the domain. According to a general result [18], it has aK self-adjoint extensionQK

λ = Qλ

which is a closed operator and this is all we need for our purposes.
Using (3.10), (3.11) and (4.3) it is easy to calculateQλ in momentum space

Qλ =
√

2
∫

d3p ω(p)[b1(p)c
+
1 (p)+ b+2 (p)c2(p)]. (4.6)

For typographical simplicity we have not written theλ-dependence inb1, b2. Qλ together
with its adjoint

Q+λ =
√

2
∫

d3p ω(p)[c1(p)b
+
1 (p)+ c+2 (p)b2(p)] (4.7)

are unbounded closed operators; the unboundedness is not only due to the emission and
absorption operators but also because ofω(p) = |p|.

SinceQλ, Q
+
λ are closed operators, we have the following direct decompositions of the

Fock space

F (λ) = RanQλ ⊕ KerQ+λ = RanQ+λ ⊕ KerQλ (4.8)

where Ran is the range and Ker the kernel of the operator. The overline denotes the closure;
note that RanQλ is not closed because 0 is in the essential spectrum ofQλ. Now,Q2

λ = 0
implies RanQλ ⊥ RanQ+λ , therefore, it follows from (4.8) that

F (λ) = RanQλ ⊕ RanQ+λ ⊕ (KerQλ ∩ KerQ+λ ). (4.9)

The range ofQλ andQ+λ certainly consists of unphysical states because (4.6) and (4.7)
only contains emission operators of unphysical particles (scalar and longitudinal ‘gluons’
and ghosts). The physical states must therefore be contained in the last subspace in (4.9).

We claim that

KerQλ ∩ KerQ+λ = Ker{Qλ,Q
+
λ } (4.10)

where the curly bracket is the anticommutator. Indeed, if a vectorf ∈ F (λ) belongs to the
l.h.s. that meansQλf = 0 = Q+λ f then it is also contained in the r.h.s. Inversely, iff
belongs to the r.h.s. then

0= (f, {Qλ,Q
+
λ }f ) = ‖Qλf ‖2+ ‖Q+λ f ‖2

it is also contained in the l.h.s. Calculating the anticommutator from (4.6), (4.7) we find

{Qλ,Q
+
λ } = 2

∫
d3p ω2(p)[b+1 (p)b1(p)+ b+2 (p)b2(p)+ c+1 (p)c1(p)+ c+2 (p)c2(p)].

(4.11)

Up to the (positive) factorω2 this is just the particle number operator of the unphysical
particles. The physical subspace is characterized by the fact that there are no unphysical
particles, hence,

Hphys= Ker{Qλ,Q
+
λ } (4.12)
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and this is a closed subspace. As discussed above, it is the intersection of allF (λ).
We introduce the projection operatorPλ on Hphys. It is our aim to prove the gauge

independence of the physicalS-matrix PλS(λ)(g)Pλ. The perturbative formulation in terms
of time-ordered productsT (λ)n (1.1) would be

PλT
(λ)
n Pλ = P1T

(1)
n P1+ div. (4.13)

Here div denotes a sum of divergences which vanish after integration with test functions
g(x1) . . . g(xn) in the formal adiabatic limit where terms with derivatives ofg are neglected.
In (4.13) we have compared the physicaln-point functions in theλ-gauge with the Feynman
gaugeλ = 1.

Gauge independence (4.13) is a direct consequence of gauge invariance (1.7). That
(1.7) really holds for arbitraryλ is discussed in the next section. Gauge invariance implies
the following important proposition (see [14, equation (5.28)])

PT (X1)PT (X2)P = PT (X1)T (X2)P + div. (4.14)

Here we have omitted indicesn and subscriptsλ to indicate that (4.14) holds for arbitrary
λ and arbitraryn-point functions. For the sake of completeness we give a proof of (4.14)
in appendix B.

The proof of gauge independence is by induction onn. The beginningn = 1 can be
easily verified becausePλA(λ)µ Pλ = P1A

(1)
µ P1 andT1 (1.2) does not depend explicitly onλ.

Let us now assume that

PλT
(λ)
i Pλ = P1T

(1)
i P1+ div (4.15)

holds for all i 6 n− 1. Then we consider arbitrary products

PλT
(λ)(X1)T

(λ)(X2)Pλ = PλT (λ)(X1)PλT
(λ)(X2)Pλ + div1 (4.16)

where we have used (4.14). Due to the induction assumption (4.15) this is equal to

= P1T
(1)(X1)P1T

(1)(X2)P1+ div2 = P1T
(1)(X1)T

(1)(X2)P1+ div3. (4.17)

Here we have used (4.14) again. The causalD-distribution of ordern in the Epstein–Glaser
construction is a sum of such products (4.16), hence, it follows that

PλD
(λ)
n Pλ = P1D

(1)
n P1+ div. (4.18)

All three terms in here have separately causal support, therefore they can individually be
split into retarded and advanced parts. The local normalization terms can be chosen in such
a way that

PλR
(λ)
n Pλ = P1R

(1)
n P1+ div (4.19)

whereR denotes the retarded distributions. We must check that this way of normalization
is not in conflict with the normalization which we adopt to achieve gauge invariance (see
section 5), but this is not the case for the following reason. We decompose

Tn = PTnP +Wn.

The condition (4.19) concerns the physical partPTnP , only. However, the latter is gauge
invariant for any normalization

QPTnP − PTnPQ = 0

becausePQ = 0 = QP . Therefore, the normalization in the proof of gauge invariance
involves only the unphysical partWn. From the gauge independence of the retarded
distributions (4.19) we obtain the same result for then-point distributions

PλT
(λ)
n Pλ = P1T

(1)
n P1+ div (4.20)

in the usual way. This completes the inductive proof.
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5. Gauge invariance in an arbitrary λ-gauge

Gauge invariance (1.7) has been proven in the Feynman gaugeλ = 1 [11, 15, 19]. Here
we summarize and reformulate that proof in a way which is manifestly independent of the
choice ofλ.

The generatorQλ (4.1) of the gauge transformations depends onλ, but the parameter
λ drops out in the gauge variations of the free fieldsAµ, Fµν andu with the exception of
ũ (1.6). However, we shall work with a ghost coupling (1.2) containing the fieldũa in the
form ∂µũa only. The gauge variation of the latter field can be written in aλ-independent
form

{Q, ∂µũa} = −iλ∂µ∂
νAaν = i∂νFaνµ (5.1)

by means of the equation of motion (2.1).

5.1. Gauge invariance at first order

The coupling (1.2) is gauge invariant at first order (1.9) with the ‘Q-vertex’

T ν1/1(x)
def= igfabc[: Aµa(x)ub(x)F

νµ
c (x) : − 1

2 : ua(x)ub(x)∂
νũc(x) :] (5.2)

for any value of the gauge parameterλ. The most general coupling which is gauge invariant
at first order, symmetrical (Lorentz covariant,SU(N)-invariant, P -, T -, C-invariant,
pseudo-unitary) and is compatible with renormalizability and contains a non-uniqueness
in the ghost sector [21]

T1+ β1{Q, gfabc : uaũbũc :} + β2∂µ[igfabc : Aµa ubũc :] (5.3)

β1, β2 ∈ R arbitrary, andT1 is given by (1.2). We shall prove gauge invariance in the case
β1 = 0 = β2. For general values ofβ1, β2 ∈ R a manifestlyλ-independent formulation is
impossible, since the fields̃ua (without derivative) (1.6) and∂µA

µ
a appear in the coupling.

(The ‘bad’ behaviour of∂µA
µ
a is explained below in section 5.3) But it has been proven [20]

that gauge invariance forβ1 = 0 = β2 implies gauge invariance for arbitraryβ1, β2 ∈ R
at least at low orders. The argumentation of that proof is of a general kind, such that it
applies to any choice ofλ.

5.2. Outline of the proof of gauge invariance in the Feynman gaugeλ = 1

In this section we summarize the proof of gauge invariance (1.7) which was given forλ = 1
in [11, 15, 19]. In section 5.3 we shall see that this proof needs no modifications for arbitrary
λ. The proof is by induction on the ordern of the perturbation series. The operator gauge
invariance (corresponding to (1.7)) ofA′n, R

′
n andDn = A′n − R′n,

[Q,Dn(x1, . . . , xn)] = i
n∑
l=1

∂xlµ D
µ

n/l(x1, . . . , xn) (5.4)

has been proven in a straightforward way [11] from the gauge invariance of theTm, m 6
n − 1. This proof is very instructive because it shows that our definition (1.7) of gauge
invariance is adapted to the inductive construction of theTn’s. However, the distribution
splitting Dn = Rn − An can only be performed in terms of the numerical distributions
dn = rn− an. Therefore, we have to express the operator gauge invariance (5.4) by theCg-
identities for Dn, theC-number identities for gauge invariance, which imply the operator
gauge invariance (5.4).
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However, there is a serious problem [11, 19]. Terms with different field operators may
compensate, due to identities such as

[u(x1)− u(x2)]∂
x1
µ δ(x1− x2)+ δ(x1− x2)∂µu(x1) = 0. (5.5)

Therefore the definition of theC-number distributions inR′n, A
′
n (and therefore inDn =

R′n − A′n) has a certain ambiguity because terms∼ (∂δ) : A . . . : can mix up with terms
∼ δ : ∂A . . . :∼ δ : F . . . :. To get rid of these ambiguities, we choose the convention of
only applying Wick’s theorem (doing nothing else) to

A′n(x1, . . . ; xn) =
∑
Y,Z

T̃k(Y )Tn−k(Z, xn) (5.6)

where the (already constructed) operator decompositions ofT̃k, Tn−k are inserted. In this
way we obtain the so-callednatural operator decomposition ofA′n

A′n =
∑
O
a′O : O : (5.7)

where the sum runs over all combinationsO of free-field operators. We similarly proceed

with A′n/l, R
′
n andR′n/l and defined(l)O

def=r ′(l)O −a′(l)O . Then, we split the numerical distributions

d
(l)

O with respect to their supports into retarded and advanced partsd
(l)

O = r(l)O − a(l)O . Next

we definet ′(l)O
def= r(l)O − r ′(l)O and symmetrize it, which yieldst (l)O . The definition

Tn(/l)
def=
∑
O
t
(l)

O : O : (5.8)

gives Tn(/l) in the natural operator decomposition. Note that this procedure fixes the
numerical distributions uniquely, up to the normalization in the causal splittingd

(l)

O =
r
(l)

O − a(l)O .
Starting with the natural operator decomposition ofDn (Tn resp.) andDµ

n/l (T µn/l),
we commute withQ or take the divergence∂xlµ according to (5.4) and obtain thenatural
operator decompositionof (5.4) ((1.7) resp.). However, due to (5.5), the Cg-identities for
Dn cannot be proven directly by decomposing (5.4). We must go another way:Instead of
proving the operator gauge invariance (1.7), we prove the corresponding Cg-identities (by
induction onn), which is a stronger statement. In this framework the Cg-identities forDn

can be proven by means of the Cg-identities forTk, T̃k at lower orders 16 k 6 n− 1.
The Cg-identities forTn are obtained by collecting all terms in the natural operator

decomposition of (1.7) which belong to a particular combination :O : of external field
operators. By doing this the arguments of some field operators must be changed by using
δ-distributions, i.e. by applying the simple identity

: B(xi)O(X) : δ(xi − xk) . . . =: B(xk)O(X) : δ(xi − xk) . . . (5.9)

whereX
def= (x1, x2, . . . xn) andO(X) means the external field operators besidesB.

We are now able to give a precise definition of the statement that the Cg-identities hold:
we start with the natural operator decomposition of (1.7). Using several times the identity
(5.9), we can obtain an operator decomposition

[Q,Tn(X)] − i
n∑
l=1

∂lTn/l(X) =
∑
j

τj (X) : Oj (X) : (5.10)

(whereτj (X) is a numerical distribution and: Oj (X) : a normally ordered combination of
external field operators) which fulfils

τj (X) = 0 ∀j. (5.11)
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The decomposition (5.10) must be invariant with respect to permutations of the vertices.
A Cg-identity is uniquely characterized by its operator combination :O :. The terms in

a Cg-identity are singular of order [11]

|O| + 1 (5.12)

at x = 0, where

|O| = 4− b − gu − gũ − d. (5.13)

Here,b, gu, gũ are the number of gluons and ghost operatorsu, ũ, respectively, inO, and
d is the number of derivatives on these field operators.

There are no pure vacuum diagrams contributing to (1.7), i.e. terms with no external
legs. The disconnected diagrams fulfil the Cg-identities separately. This can be proven
easily by means of the Cg-identities for their connected subdiagrams, which hold by the
induction hypothesis.

Let us consider aconnecteddiagram in the natural operator decomposition of (1.7). We
call it degenerate, if it has at least one vertex with two external legs; otherwise it is called
non-degenerate. Let xi be the degenerate vertex with two external fields, sayB1, B2. Such
a ‘degenerate term’ has the following form

: B1(xi)B2(xi)B3(xj1) . . . Br(xjr−2) : 1(xi − xk)tn−1(x1− xn, . . . xi − xn, . . . xn−1− xn)
(5.14)

wherek 6= i, jl 6= i (∀l = 1, . . . , r−2) and the coordinate with a bar intn−1 must be omitted.
In general, there is a sum of such terms (5.14) belonging to the fixed (degenerate) operator
combination :O :=: B1(xi)B2(xi)B3(xj1) . . . Br(xjr−2) :. For 1(xi − xk) the following
possibilities appear:

(a)1 = DF , ∂DF , ∂µ∂νDF (µ 6= ν), ∂ρ∂µ∂νDF (µ 6= ν 6= ρ 6= µ),
(b) 1 = δ(4), ∂δ(4).
The ∂δ(4)-terms in (b) cancel [15]. If a degenerate term (5.14) with1 = δ(4) (type

(b)) can be transformed in a non-degenerate one by applying (possibly several times) the
identity (5.9) only, we call itδ-degenerate; if this is not possible we call ittruly degenerate.
All other degenerate terms (i.e. the terms of type (a)) are called truly degenerate, too.

The truly degenerate terms fulfil the Cg-identities separately, by means of the Cg-
identities for their subdiagrams[19, section 3.1]. The latter hold by the induction hypothesis.
The exception are some tree diagrams at second and third order, which need an explicit
calculation [19, section 3.2].

There remain the non-degenerate andδ-degenerate terms, which are linearly dependent.
Therefore,the δ-degenerate terms must be transformed in non-degenerate form by using
(5.9). In this way we obtain completelynew Cg-identities, in contrast to the disconnected
and the truly degenerate Cg-identities, which rely on Cg-identities at lower orders.
Therefore, it is not surprising that the difficult part of the proof of the Cg-identities concerns
the non-degenerate :O : (including δ-degenerate terms). First, one proves the Cg-identities
of the non-degenerate andδ-degenerate terms forA′n, R

′
n (and therefore also forDn) by

means of the Cg-identities at lower orders [19, section 4.1]. In the process of distribution
splitting the Cg-identities can be violated by local terms only which are singular of order
|O| + 1 (5.12), i.e. the possible anomaly has the form

a(x1, . . . xn) =
|O|+1∑
|b|=0

CbD
bδ4(n−1)(x1− xn, . . .). (5.15)
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We see that we only have to consider Cg-identities with

|O| > −1. (5.16)

This occurs only for Cg-identities with 2-, 3-, 4-legs and one Cg-identity with 5-legs
(: O :=: uAAAA :). For the latter the colour and Lorentz structures exclude an anomaly
(5.15) [15]. For the Cg-identities with 2-, 3- and 4-legs we first restrict the constantsCb in
the ansatz (5.15) by means of covariance, the SU(N)-invariance and invariance with respect
to permutations of the inner vertices. Then we remove the possible anomaly by finite
renormalizations of thet-distributions in the Cg-identity. If a certain distributiont appears
in several Cg-identities, the different normalizations oft must be compatible. For certain
Cg-identities (:O :=: uAA :, : uAAA :, : uu∂ũA :) the removal of the anomaly is only
possible, if one uses additional information about the infrared behaviour of the divergences
with respect to inner vertices [15].

5.3. The modifications of the proof of gauge invariance for arbitraryλ

Going over to an arbitraryλ-gauge there are two fundamental changes.
(A) The wave equation for the free gauge fieldAµa is replaced by (2.1). However, in the

proof of gauge invariance the equation of motion forAµ is used in (5.1) only. Therefore,
by working always with{Q, ∂µũa} = i∂νFaνµ the modification of the equation of motion
causes no changes in the proof of gauge invariance.

(B) The commutator [Aµ,Aν ] (2.15) has an additionalλ-dependent term with the dipole
distributionE. Similar changes appear in the positive and negative frequency part of (2.15),
as well as in the retarded, advanced and Feynman propagator. All other commutators
resp. propagators are independent ofλ, e.g. [Aaµ, Fbντ ]. If we were to work with another
ghost coupling(β1, β2) 6= (0, 0) the field ∂µAµ would appear, which has aλ-dependent
commutator withAν

[∂µAaµ(x), Abν(y)] = i

λ
δab∂νD(x − y). (5.17)

We now have to check that the explicit form of theAA-commutator resp. propagator is not
used in the proof of the Cg-identities.

—Second-order tree diagrams. The explicit form of the propagators is used in the
verification of gauge invariance for the second-order tree diagrams, but gauge invariance can
only be violated by local terms∼ (∂)δ(x1−x2). The latter can only appear if the propagator
is of singular orderω > −1 (see (5.12)), but theAA-propagator (without derivatives) has
ω = −2 and, therefore, plays no role in this calculation. In all other propagators (with
derivatives) theλ-dependence drops out because the derivatives occur in the antisymmetric
F , only. Especially, we conclude that the 4-gluon interaction (which is a normalization
term of the second-order tree diagram with external legs :A(x1)A(x1)A(x2)A(x2) : and is
uniquely fixed by gauge invariance [11,19]) is independent ofλ and that it is the only local
term in T (λ)2 |tree.

—δ-degenerate terms. If1(xi−xk) in (5.14) originates from anAA-propagator (without
derivatives) we know about the singular orderω(1) 6 ω([A,A]) + 1 = −1. Therefore,
1 6= δ, ∂δ and the set ofδ-degenerate terms is unchanged forλ 6= 1. Of course mostt-
distributions depend onλ (due to (2.15)), but we conclude that theCg-identities belonging
to non-degenerate: O : (which include theδ-degenerate terms)are manifestly independent
of λ. (This is obvious for the non-degenerate terms.)

—We turn to the proof of the Cg-identities belonging to non-degenerate :O : for a′ and
r ′ by means of the Cg-identities at lower orders [19, section 4.1]. There one has to show that
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the operator decomposition of [Q,A′n] = [Q,
∑
T̃kTn−k] is unchanged if we interchange

the operation [Q, .] with contracting. For this purpose one needs the explicit form of some
propagators, but theAA-propagator is not used. The non-trivial step is the cancellation of
the terms arising by contracting the commutated leg.

—The same cancellation is used in the proof of the Cg-identities for the truly degenerate
terms by means of the Cg-identities for their subdiagrams [19, section 3.1]. Again the
explicit form of theAA-propagator plays no role.

We emphasize that (A) and (B) are the only relevant changes for arbitraryλ. Especially
the singular order of the numerical distributions (5.12-13) and the symmetries (Lorentz
covariance,SU(N)-invariance,P -, T - andC-invariance, pseudo-unitarity and invariance
with respect to permutations of the vertices) are manifestly independent ofλ. Consequently,
the ansatz (5.15) for the possible anomalies (in the Cg-identities belonging to non-degenerate
: O :) remains the same and the constantsCb in (5.15) can be restricted in the same way.
Moreover, the normalization polynomials of thet-distributions are unchanged and, therefore,
we can use them to remove the anomalies in the same way. Finally, gauge invariance of
third-order tree diagrams, which must be verified explicitly [19, section 3.2] and the proof of
the non-trivial 5-legs Cg-identity [15] rely on theSU(N)-invariance and Lorentz covariance.
Therefore, these parts of the proof also need no change.

Summing up we see that the inductive proof of the Cg-identities is manifestly
independent ofλ if we choose the ghost couplingβ1 = 0 = β2 (5.3) and always work
with Fµν instead of∂µAν (5.1).

The coupling to fermionic matter fields (in the fundamental representation) can be
added to this model. Gauge invariance holds true if and only if the coupling constants
agree (universality of charge). This has been carried out in the Feynman gauge in [20].
There are no changes for arbitrary values ofλ.
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Appendix A. Cauchy problem for the iterated wave equation

First we formulate the Cauchy problem for the equation

�2u ≡ (∂2
0 − ∂2

1 − ∂2
2 − ∂2

3)
2u = 0. (A.1)

Since (A.1) is of fourth order in timex0 = t , a complete set of Cauchy data att = 0 is
given by

(∂n0u)(0,x) = un(x) n = 0, 1, 2, 3. (A.2)

For simplicity we assume theun to be in Schwartz space, then the initial-value problem
(A.1), (A.2) has a unique solution. This solution can be constructed by means of the
tempered distributionsD(x) andE(x), defined by

�D = 0 D(0,x) = 0 (∂0D)(0,x) = δ3(x) (A.3)

�2E = 0 (∂n0E)(0,x) = 0 n = 0, 1, 2 (∂3
0E)(0,x) = δ3(x). (A.4)

D is the well known Pauli–Jordan distribution andE is sometimes called dipole distribution
and we will compute it.
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We now claim that the solution of the Cauchy problem (A.1) and (A.2) is given by

u(x) =
∫

d3y [D(x − y)u1(y)− ∂y0D(x − y)u0(y)

+E(x − y)(u3−4u1)(y)− ∂y0E(x − y)(u2−4u0)(y)] (A.5)

where4 denotes the three-dimensional Laplace operator. This formula is the same as the
covariant equation (2.6) which is an obvious generalization of the solution of the ordinary
wave equation. Using (A.3) and (A.4) it is a simple task to verify (A.1) and (A.2). Therefore
it remains for us to construct the dipole distributionE.

From (A.3) and (A.4) we obtain

�E(x) = D(x) (A.6)

and we want to obtainE as solution of this equation. We solve this problem in momentum
space. The Fourier transform ofD is well known

D̂(p) = i

2π
sgnp0δ(p

2) (A.7)

so that

p2Ê(p) = − i

2π
sgnp0δ(p

2). (A.8)

A solution of this equation can immediately be written down by means of the identity

p2δ′(p2) = d

dp2

(
p2δ(p2)

)− δ(p2) = −δ(p2) (A.9)

namely

Ê(p) = i

2π
sgnp0δ

′(p2). (A.10)

By inverse Fourier transform the initial conditions (A.4) can be verified andE(x) can be
computed

E(x) = 1

8π
sgn(x0)2(x

2). (A.11)

Note that the positive-frequency part

‘ Ê(+)(p)’ = i

2π
2(p0)δ

′(p2)

is ill defined. This never occurs in rigorous calculations. Only derivatives ofE have to be
split into positive- and negative-frequency parts (see (1.3)) and these are well defined.

Appendix B

Here we prove the relation (4.14). We start from the orthogonal direct decomposition (4.9)
which can be written as

1= PQ + PQ+ + P (B.1)

wherePQ and PQ+ are projection operators ontoRanQ and RanQ+ and P projects on
Hphys. The operator (4.11)

{Q,Q+} ≡ K > 0 (B.2)
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is positive self-adjoint on the orthogonal complementH⊥phys ofHphys, so that it has an inverse

KK−1 = PQ + PQ+ = K−1K K−1P = 0. (B.3)

This allows us to write (B.1) in the form

1= P +QQ+K−1+Q+QK−1. (B.4)

Now we consider

PT (X1)T (X2)P = PT (X1)(P +QQ+K−1+Q+QK−1)T (X2)P

= PT (X1)PT (X2)P + PT (X1)QQ
+K−1T (X2)P

+PT (X1)Q
+QK−1T (X2)P . (B.5)

SincePQ = 0, the second term is equal to

P [T (X1),Q]Q+K−1T (X2)P

which is a divergence due to gauge invariance ofT (X1).
In the last term in (B.5) we use the fact thatK and, hence,K−1 commute withQ which

follows easily from the definitions (B.2), (4.11) and (4.6). Then we conclude that

PT (X1)Q
+K−1QT (X2)P = PT (X1)Q

+K−1[Q,T (X2)]P

is also a divergence. Consequently,

PT (X1)T (X2)P = PT (X1)PT (X2)P + div

which is the desired relation (4.14).
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