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Abstract. The gauge dependence of the time-ordered products for Yang—Mills theories is
analysed in perturbation theory by means of the causal method of Epstein and Glaser together
with perturbative gauge invariance. This approach allows a simple inductive proof of the gauge
independence of the physic&tmatrix.

1. Introduction

The properties of (quantum) gauge invariance and gauge-parameter independence, which
are inherent in all kinds of gauge theories, have always been of great interest. In the
calculation of physical observables, imatrix elements, the question of gauge parameter
independence arises automatically. In the usual Lagrangian approach to quantum field
theory, the gauge invariance of the classical Lagrangian has to be broken in order to quantize
the theory. Therefore, gauge fixing terms which depend on free gauge parameters are added
to the Lagrangian. The theory then still has Becchi, Rouet and Stora (BRS) invariance [1].
The gauge parameters drop outSrmmatrix elements between physical states. But Green
functionsare gauge dependent in general. On the other hand, it can be shown that Green
functions of the special class of gauge invariant operators are independent of the method of
gauge fixing and so gauge-parameter independent [2].

In fact, the crucial property of gauge theories which allowed us to show the gauge
independence of physical-matrix elements by path-integral methods is BRS invariance,
holding for arbitrary gauge parameters. BRS invariance implies generalized Ward—Takahashi
identities first proved by Slavnov and Taylor [3,4]. One considers then the generating
functional W, (J) of the theory, where. is a gauge parameter andthe external source
coupled to a physical field (e.g. a gauge or quark field). Changing the gauge parameter
by an infinitesimal amountidand using the Slavnov—Taylor identities, the desired result
can easily be derived [5].

The property of gauge-parameter independence has also recently gained renewed interest
in practical problems. For example, the introduction of running couplings can only be
achieved by a resummation of certain subsets of Feynman diagrams [6-8] and it is then
necessary to define a general procedure for maintaining the gauge independence of the
theory. Of course, the significance of such resummed objects is always questionable.
Furthermore, the problem has also been discussed in the framework of the background-
field model for the electroweak standard model [9].
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It is the aim of this paper to describe the situation from a totally different point of
view for the example of pure Yang—Mills theory, without making reference to path-integral
methods. Some years ago, some of us [10, 11] began to advocate the causal approach to
perturbative quantum field theory, which goes back to a classical paper by Epstein and
Glaser [12]. No ultraviolet divergences and only well-defined objects (no interacting fields)
appear in this approach. Meanwhile, the method has been applied successfully to full
Yang—Mills and massive theories as the electroweak standard model [13].

In the causal approach, ttfematrix is viewed as an operator-valued distribution of the
following form:

> 1
Sg =1+ Z ) / dxi...dx, T, (x1, ..., x,)g(x1) - ... g(xn) (1.2)
n=1"""

whereg € S, the Schwartz space of functions of rapid decrease. Thare well-defined
time-ordered products of the first-order interactidyy which specifies the theory. For
example, for QCD without matter fields one has

Tl(x) = igfabc{:'zL : Aua(x)Avb(x)chu(x) L A;La(x)ub(x)auﬂc(x) :} (12)

where F,"* = 9" A" — 3* A} is thefree field strength tensor and,, iz, are the (fermionic)
ghost fields. The asymptotic free fields satisfy the well known commutation relations

A, AP O] =i DT =)+ @A DD =y (13
in the so-calledi-gauges, and

w® ), a® (y)}) = —iDF(x — y) (1.4)

where D and E will be defined below and all other (anti-)commutators vanish. (For the
generalization to the massive case see [14].) The introduction of ghost fields is necessary
already at first order to preserve perturbative quantum gauge invariance, which we are going
to explain now. It can be written in our case by the help of an appropriately defined gauge
chargeQ:

0= k/dgx 8, A" (x) 8 ou (x). (1.5)
This leads to the following gauge variations for the fields:
[Q,A,] =id,u [Q,F,]=0 {0,u} =0 (0, it} = —ird, A", (1.6)

Obviously, these variations have a simpler structure than those in the BRS case. Perturbative
guantum gauge invariance is then expressed by the following condition:

[Q. T, (x1....x)] =1 ) 94T (x1....x,) = (sum of divergences (1.7)
=1

whereT,), is a mathematically rigorous version of the time-ordered product
Tn’jl(xl, v Xy) = T(Ta(xy) ... Tl’jl(x,) o Ti(xg)) (1.8)
[Q, Ta(x)] =1109,Ty);(x) (1.9)

constructed by means of the method of Epstein and Glaser. Note that the usual 4-gluon
term is missing inTy. This term is generated by quantum gauge invariance at second order
of perturbation theory.

The paper is organized as follows. In the next section we introduce the asymptotic
gauge fields in the covariantgauges and discuss their relation for differ@nfThen in the
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third section we construct a concrete representation in momentum space which is useful for
certain computations in the next section. There we discuss the physical subspace and prove
gauge independence of the time-ordered products on the physical subspace. This result is a
consequence of gauge invariance for anyThe latter property is investigated in section 5.

Two appendices contain the technical details.

2. Asymptotic fields in covariant A-gauges

We shall use asymptotic gauge fields satisfying the modified wave equation

OA%Y = (1-1)9,0"A. (2.1)
Here 1 is a real gauge parameter,= 1 corresponds to the Feynman gauge. We have
omitted colour indices etc which are unimportant in this section, only the Lorentz structure
matters here. The upper ind€X) indicates that the field corresponds to the gauge parameter
A, and we are going to consider the fields with differeérgimultaneously.

First we want to solve the Cauchy problem for (2.1) with Cauchy data specified at time
t = 0 in the wholeR3. For this reason we isolate the highest time derivatives in (2.1)

MBAG = DAY + (1—2)dd! A (2.2)

RAY = AAY + (1—1)0;(2°Ag” + ' A). (2.3)
Consequently, in agreement with the ordinary wave equation, the Cauchy data are given by
AP0, z) and (30A’)(0, ). Taking the divergencé” of (2.1) we obtain for # 0

W _

0" A% =0 (2.4)

so thatA? satisfies the iterated wave equation
2400 _
[2A% = 0. (2.5)

The Cauchy problem for this equation is considered in the appendix. The solution can be
written in terms of the Lorentz invariant distributiol(x) and E (x):

AP (x) = Py D(x — AP )+ | Py E@x—y)a0AP (). (2.6)

Y0=0 y0=0
Here, all second- and third-order time derivatives under the last integral must be expressed
by spatial derivatives of the Cauchy data by means of (2.2) and (2.3).

It is very important to note that the decomposition (2.6) is Lorentz covariant. Indeed,
instead of selecting the plang = 0 we may consider a smooth spacelike surfacsith a
surface measuresd(y). Then, with the help of Gauss’ theorem, the integrals in (2.6) can
be written in invariant form

/ d?’y...(go—)/dav(y)...(g”
¥0=0 o

showing that each term on the r.h.s. of (2.6) is a Lorentz four-vector.
Let us denote the first term in (2.6) which satisfies the ordinary wave equatidif oy
(w stands for wave). The second term denotedBhyis equal to

B,(x) =(1—x) / &y E(x — y)?oaMaAm(y) (2.7

where (2.1) has been inserted. For= j = 1, 2, 3 the derivative can be taken out by
partial integration, so that

Bj(x) = 9 x(x) (2.8)
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is a spatial gradient with

@ =@-2) [ RyE@x—y)d0dAP(y). (2.9)

yo=0

However, this is impossible for the zeroth component
Bo(x) = dox (x) + B(x). (2.10)

The differenceB(x) can be transformed as follows

B(x) = (1— %) f By [E(x — ) 3000AD () — 35E(x — ) 909AD ()]

=(1-2 / &y RIE(x — 1) 969 AD ()]

(1-2) / d®y [ Edd AP + EdGIAW — 9§ EIAY — 9T Edpd AP

— (1= / By OE(x — »)dAM (y)

= —a-n [ dy D= »ral o). (211)

This shows that the fiel#(x) also fulfils the wave equationlB = 0. Therefore, it is
tempting to combine it withA§ (x). The resulting four-component field

Al = (A} + B, A}, Ay, AY) (2.12)
satisfies the wave equation and we have the simple decomposition
AP = AL +0,x. (2.13)

However, this decomposition has the serious defect of not being covariant (see (2.12)).
Therefore, we must make a sharp distinction between the ,ﬁgland thecovariant field

AfL in the Feynman gaugke = 1, although both fields satisfy the wave equation and the
same commutation relation, as we shall see.

Next we want to quantize tha®-field. It follows from (2.6) that the commutation
relations for arbitrary times must involve the distributiofis and E. Then, Poinca
covariance and the singular order= —2 of the resulting distribution suggest the following
form

[AP ). AP ()] = g Dx — y) +iad, 9, E(x — y) (2.14)

where a common factor(27) has been set =1. When operating wiflg“* — (1 — A)9* 9*
on the variablex, we must obtain zero. This determines the parameter Using
OE(x) = D(x), we find

1-—
(AL (0, AL W] = g DOx — 3) 1558, Ex — ). (215)

The corresponding commutation relations for the positive- and negative-frequency parts read
(see (1.3))

1—A
(A0, AP D ()] =gy DD (x = ) +177 3,8, E) D (x — ). (2.16)

Note that the positive-frequency part of the derivatidgE) is well defined, in contrast to
E®.
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From the initial values of thé- and E-distributions

D, z) =0 (3D)(0, z) = §3(x) (2.17)
(33E)(0,2) =0 n=012 (3E)(0, ) = 83(x) (2.18)
we obtain the equal-time commutation relations
. 1-2A
[80AL (), AP 0o = g (14 07 ) 3@ = ) (2.19)
* *) A -1
[90Ag” (x), A" (W)]o = lTaij(fB -y) (2.20)

where the subscript 0 meang = yg. All other commutators are zero. It follows from
(2.19) (2.20) that three-dimensional smearing with a space dependent test fufctipis
sufficient to obtain a well-defined operator in Fock space.

From the fundamental commutation relations (2.15) the commutators of all other fields
can be calculated because they are all expressetiby We find

[xx), x(N] =0 (2.21)
[A} (x), Ay (D] =g D(x — y) (2.22)
(45 (). AF ()] = 3D = ) (2.23)
[AL @), AL()] = iguwD(x — y). (2.24)

Now, AY(x), j = 1,2, 3 are the spatial components of a covariant vector field satisfying
the wave equation. The commutation relations (2.22) are the same as for the Feynman field
Af(x). Nevertheless, we cannot identify the two as we shall see in the next section by
constructing a concrete representation of the field operators.

3. Concrete representation in momentum space

Most authors who consider thegauges leave the construction of a concrete representation
to the reader. We try to be more polite to our readers.

Since three-dimensional smearing is enough to remq,é)r(x) well defined, we will
construct all fields as three-dimensional Fourier integrals, leaving aside manifest Lorentz
covariance. Our strategy will be to start with a representation of the time-zero fields which
satisfies the equal-time commutation relations (2.19), (2.20) and then calculating the time
evolution by the formulae of section 2. We follow the somewhat unusual, but mathematically
more satisfactory procedure of assuming a Fock space patitive definite metriand
changing the form of the zeroth compone«ﬁ‘) instead [10]. This is very natural in the
A-gauge because the zeroth component plays a special role here, anyway.

We use the usual emission and absorption operators for all four components satisfying

[ (). aPF (@)] = 8,,8(p — ). (3.1)

The adjoint is defined with respect to the positive definite scalar product so that these
operators can be represented in the usual way in a Fock sgacef smeared out with test
functions f (p) € L2(R%). In addition we will use the operators for the longitudinal mode

J .
o’ = = ) = -ZLa? p) (3.2)



1568 A Aste et al

where alwaysy = |p| = p°. Introducing the linear combinations

1
b (p) = TZ(aﬁ” ) + a3’ (p))
(3.3)
1
by (p) = —=(@]” (p) — ay’ (p))

V2

we have the following commutators
[ (), b (@)] = 0

1
) M+ _ Pv _
1 v
)+ My — = P _
[a," " (p), by (@)] = N dp— .

In addition to the adjoint we have to introduce a second conjugéfiavhich appears in all
Lorentz covariant expressions and defines the so-called Krein structure [17]. It is defined

by
al’! @) =—ag’ @ @ =4 @ j=123 (35
Note thata”, a{’* are not treated as four-vectors, therefore, we always write the indices
below.
The gauge fieldA " (x) must be self-conjugated(}’* = A", in order to get a pseudo-
unitary S-matrix. Then, a little experimentation shows that the time-zero fields must be of
the following form:

— d3p ipT —ipT
AP0, ) = (27) 3/2/E{a;“(p)ép +a P (pe?

1-APu,00, Py 00+ )\ i
——=| —=b;" (p)EP" + —=b;" " (p)e"P*
2«/2)\,[(1) 1 p w 2 p

—2g.0b)" (p)EP” — ZgMobém(p)e‘im} } (3.6)
(3AP)(0, ) = —i(27)~%2 &Ep [0 g@rr _ WK (pyeipT
04,0, ) = —i(2r) Nzl e (@) wa,’" (p)€

1—A
2V2%
—ZgMoa)by) (p)eP® + ZgMOa)béxH(p)e_ipz} } (3.7)

[ b (D)EPT 4 p b (pre P

It is straightforward to verify the commutation relations (2.15), (2.19) and (2.20).
The fields for arbitrary times can now be found from (2.6). For this purpose we need
the following three-dimensional Fourier transforms (§gr= 0)

/d3y D(x — y)eP¥ = —ZL(
®
/dsy E(x — )PV = -1 |:é"“x0 (xo + I—) +elor’ (xo - L>:| ere, (3.9

eiw)c0 _ e—ia)xo)eipac (38)

4? 1) 1)
We first compute

(@"AP) (0, ) = %(271)*3/2 f &p Vo)’ (p)er” — by'" (p)e 7 (3.10)
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*/_ / JT%wz(b;A) (P)EP” + b3 (p)eP). (3.11)

Then we obtain from the first term in (2.6)

(300" AW (0, ) = ——(27)"%/?

Af () = (2”)_3/2/ J—(“;(M(P)e_"’x +a @ o f (0 (312)
where
S 1-2 RS _ ‘
1) = e / — L (—p)er — b{ T (—pe ],

The zeroth component behaves differently

AY(x) = (2m)7%? P [aé” (p)e P — al’* (p)eP*

/ V20
1-A . .
+—f (e + b;”+<p)é'”)]

Sae ™

Next we calculatey (x) from (2.9)

(by" (—p)eP* + by’ (—p)e™'™). (3.13)

x@) = e

o e (o 3)

+b3F (p)er <x0 + L) ] - f) (3.14)
20w

and B(x) from (2.11)

B = =2 m) 2 [ L e + by

7 7

_—f_zﬂznrs/z jiaw( —p)E” + 37" (—p)e). (3.15)

This cancels against the second line in (3.13) so that

AP ) = @02 [ ZEia @e ' — o )M + dolx + £)- (3.16)

[ %
The first integral in (3.16) and (3.12) formally agrees with the Feynman ﬁ@dbut the
latter is defined by means of different annihilation and creation operaﬁﬁl@), af}”(p)

A () = (2m) 7% [a )& + aPK (p)e™]. (3.17)

[

In A% the terms with wrong frequencies b} (—p) etc cancel out. Then the resulting
decompositiod? = AL + 3,7 is identical to the one introduced by Lautrup [16].

Until now every fieldA® operates in its own Fock spad€”, but there must exist a
A-independent intersection of theg&” where the gauge-independent objects live. Indeed,
in the foregoing equations the-dependence is only through the unphysical scalar and
longitudinal modesy, b, (3.3), all equations involving only transverse modes which can
be written down contain na. Therefore, we can safely identify the transverse emission
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7{ phys f ®

Figure 1. Relation between Fock spaces with different values of the gauge parameter

and absorption operators for different Let ¢* = (0, €) andn* = (0, i) be two transverse
polarization vectors

p-e(p)=0=p-n(p) e2=1=n

Then we put

e"al (p) = a.(p) n"a (p) = a,(p) (3.19)
independent oh. Choosing one unique vacuusn for all field operators

a:(p)R2 = 0=a,(PQ2 = b (P)Q2 = b5 P2 =0
for all p (or rather after smearing with test functiofigp)), then the different Fock spaces

F® hang together (figure 1). Their intersection is the physical subspi@gg which is
spanned by the transverse staes$)” (a,")"2

2 e-n=0. (3.18)

4. Gauge invariance and gauge independence

Now we come to the study of the nilpotent gauge chagge(1.5)
0, = k/d3x 9 A (x) 3 o (x) (4.1)

where the colour indices are always suppressed if the meaning is clear. The ghost,fields
u are quantized as follows

{ua(x), ity (y)} = —i8apD(x — ).
Since there is na.-dependence here, they can be represented in the usual way

(4.2)

u(x) = (2r)~¥?2 (c2(p)e™'P* + ¢f (p)EPY) (4.3)

[ &

ii(x) = (2m)~¥/? (—c1(p)e P + ¢ (p)éP) (4.4)

[ &
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where
{ci(), ¢f (@) = 8;;8(p — @) ij=12
The conjugationk is extended to the ghost sector by
2@ =a@?* a@® =@’ (4.5)

so thatuX = u is K self-adjoint andi® = —ii. ThenQ; (4.1), if densely defined, becomes
K-symmetricQ, C QK. Itis not necessary for the following to give an explicit description
of the domain. According to a general result [18], it ha§ aelf-adjoint extensio® X = Q;
which is a closed operator and this is all we need for our purposes.

Using (3.10), (3.11) and (4.3) it is easy to calculd@lg in momentum space

0, =+2 / & p o (P)[b1(p)c] (P) + by (p)ca(p)]. (4.6)

For typographical simplicity we have not written thedependence i, b,. Q; together
with its adjoint

o =+v2 / &p o (P)[c1(P)b] (P) + cF (P)ba(p)] 4.7)

are unbounded closed operators; the unboundedness is not only due to the emission and
absorption operators but also because gb) = |p|.
SinceQ;, Q) are closed operators, we have the following direct decompositions of the
Fock space
F® =RanQ, ® Ker Q] = RanQ;” @ KerQ; (4.8)

where Ran is the range and Ker the kernel of the operator. The overline denotes the closure;
note that Ram; is not closed because 0 is in the essential spectrum;ofNow, Qf =0
implies RanQ; L RanQ;", therefore, it follows from (4.8) that

F® =RanQ, @ RanQ; @ (Ker 0; N Ker Q). (4.9)

The range ofQ; and Q} certainly consists of unphysical states because (4.6) and (4.7)

only contains emission operators of unphysical particles (scalar and longitudinal ‘gluons’

and ghosts). The physical states must therefore be contained in the last subspace in (4.9).
We claim that

Ker 0, NKer Q) = Ker{Q;, 0"} (4.10)

where the curly bracket is the anticommutator. Indeed, if a veftarF® belongs to the
l.h.s. that mean®; f = 0 = Q; f then it is also contained in the r.h.s. Inversely,fif
belongs to the r.h.s. then

0= (f{Qs QYN = 1O fIZ+11Q] 12
it is also contained in the L.h.s. Calculating the anticommutator from (4.6), (4.7) we find

{0, 05y =2 / & p w?(p)[by (P)b1(P) + by (P)b2(p) + ¢ (P)c1(p) + cF (P)ca(p)].
(4.11)

Up to the (positive) factor? this is just the particle number operator of the unphysical
particles. The physical subspace is characterized by the fact that there are no unphysical
particles, hence,

thys = Ker{ Qz\v Qr} (4-12)
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and this is a closed subspace. As discussed above, it is the intersectior76f all

We introduce the projection operat®, on Hpnys It is our aim to prove the gauge
independence of the physicsdématrix P, S® (g) P,. The perturbative formulation in terms
of time-ordered productg® (1.1) would be

PTY P, = PiTY Py + div. (4.13)

Here div denotes a sum of divergences which vanish after integration with test functions
g(x1) ... g(x,) in the formal adiabatic limit where terms with derivativesgadire neglected.
In (4.13) we have compared the physiggboint functions in the.-gauge with the Feynman
gaugeir = 1.

Gauge independence (4.13) is a direct consequence of gauge invariance (1.7). That
(1.7) really holds for arbitrary. is discussed in the next section. Gauge invariance implies
the following important proposition (see [14, equation (5.28)])

PT(X1)PT(X2)P = PT(X1)T(X2)P + div. (4.14)

Here we have omitted indicesand subscripts. to indicate that (4.14) holds for arbitrary
A and arbitraryn-point functions. For the sake of completeness we give a proof of (4.14)
in appendix B.

The proof of gauge independence is by inductionnonThe beginning: = 1 can be
easily verified becausg, A} P, = P1AQ’ P, and T1 (1.2) does not depend explicitly on
Let us now assume that

pTY P, = P,TY Py + div (4.15)
holds for alli < n — 1. Then we consider arbitrary products
P,TP(X)TP (X)) Py = P, T (X1) P, T? (X2) Py, + divy (4.16)

where we have used (4.14). Due to the induction assumption (4.15) this is equal to
=P TV X)PITO (X)) PL+divy = PLTOX )TV (Xp) Py +diva.  (4.17)
Here we have used (4.14) again. The cauzalistribution of ordem in the Epstein—Glaser
construction is a sum of such products (4.16), hence, it follows that
P.D™ P, = PLDY P; + div. (4.18)
All three terms in here have separately causal support, therefore they can individually be

split into retarded and advanced parts. The local normalization terms can be chosen in such
a way that

P.RP P, = PRV P, + div (4.19)

where R denotes the retarded distributions. We must check that this way of normalization
is not in conflict with the normalization which we adopt to achieve gauge invariance (see
section 5), but this is not the case for the following reason. We decompose

T, = PT,P + W,.
The condition (4.19) concerns the physical pAf, P, only. However, the latter is gauge
invariant for any normalization

QPT,P — PT,PQ =0

becausePQ = 0 = QP. Therefore, the normalization in the proof of gauge invariance
involves only the unphysical pa®,. From the gauge independence of the retarded
distributions (4.19) we obtain the same result for #hpoint distributions

PTH P, = PTY P+ div (4.20)
in the usual way. This completes the inductive proof.
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5. Gauge invariance in an arbitrary A-gauge

Gauge invariance (1.7) has been proven in the Feynman gauge [11,15,19]. Here
we summarize and reformulate that proof in a way which is manifestly independent of the
choice ofA.
The generatoQ; (4.1) of the gauge transformations dependsioibut the parameter
A drops out in the gauge variations of the free fields F*¥ andu with the exception of
i (1.6). However, we shall work with a ghost coupling (1.2) containing the figlth the
form d,i, only. The gauge variation of the latter field can be written ik-imdependent
form

{Q, duita} = —120,0"Agy = 10" Faup (5.1)

by means of the equation of motion (2.1).

5.1. Gauge invariance at first order

The coupling (1.2) is gauge invariant at first order (1.9) with tBevertex’

Tl"/l(x) d=Efigfa;,C[: Apa () up(x)F*(x) —% Sug()up(x)8Vic(x) ] (5.2)

for any value of the gauge parameterThe most general coupling which is gauge invariant

at first order, symmetrical (Lorentz covarianfU (N)-invariant, P-, T-, C-invariant,
pseudo-unitary) and is compatible with renormalizability and contains a non-uniqueness
in the ghost sector [21]

Tl + ﬁl{Q? gfabc : ua’;bﬁc :} + ﬂZau[l gfabc : Aﬁ:ub’zc :] (53)

B1, B2 € R arbitrary, andr; is given by (1.2). We shall prove gauge invariance in the case
B1 = 0= B,. For general values g8, 8> € R a manifestlyr-independent formulation is
impossible, since the fields, (without derivative) (1.6) and, A, appear in the coupling.
(The ‘bad’ behaviour of, A, is explained below in section 5.3) But it has been proven [20]
that gauge invariance fg8; = 0 = B, implies gauge invariance for arbitrags, 8, € R

at least at low orders. The argumentation of that proof is of a general kind, such that it
applies to any choice of.

5.2. Outline of the proof of gauge invariance in the Feynman gaugel

In this section we summarize the proof of gauge invariance (1.7) which was givensfdr

in [11, 15, 19]. In section 5.3 we shall see that this proof needs no modifications for arbitrary
A. The proof is by induction on the orderof the perturbation series. The operator gauge
invariance (corresponding to (1.7)) df , R, andD, = A, — R/,

[Q. Dy(xy, ..., x)] =0 0¥ Dy, (x, ..., x) (5.4)
=1

has been proven in a straightforward way [11] from the gauge invariance df,the: <

n — 1. This proof is very instructive because it shows that our definition (1.7) of gauge
invariance is adapted to the inductive construction of Th's. However, the distribution
splitting D, = R, — A, can only be performed in terms of the numerical distributions
d, = r, —a,. Therefore, we have to express the operator gauge invariance (5.4) 6gthe
identities for D,, the C-number identities for gauge invariance, which imply the operator
gauge invariance (5.4).
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However, there is a serious problem [11,19]. Terms with different field operators may
compensate, due to identities such as

[u(xy) — u(xz)]al)ilS(Xl —x2) +8(xy — x2)d,u(x1) = 0. (5.5)
Therefore the definition of th€-number distributions ink;,, A/, (and therefore inD, =
R, — A)) has a certain ambiguity because termgds) : A... : can mix up with terms
~§:0A...:~8: F.... To getrid of these ambiguities, we choose the convention of
only applying Wick’s theorem (doing nothing else) to
Ap, ) =TT, k(Z, %) (5.6)
Y,z

where the (already constructed) operator decompositiori&.df,_; are inserted. In this
way we obtain the so-calledatural operator decomposition of/,

= Zab 10 (5.7)
@)
where the sum runs over all combinatiofsof free-field operators. We similarly proceed
with A}, ,. R, andR,, and defineiyy €75 —a’. Then, we split the numerical distributions

d$) with respect to their supports into retarded and advanced g§rts: r$) — al). Next

(&0 _ 4D and symmetrize it, which yields?. The definition

def
n(/l) —e Zl‘(l) . . (58)

gives T, in the natural operator decomposition. Note that this procedure fixes the

numerical distributions uniquely, up to the normalization in the causal splitlfﬁg:
0 _ (1>
r

we definer,,

Startlng with the natural operator decomposition af (7, resp.) anan ; (Tn‘j,),
we commute withQ or take the divergence; according to (5.4) and obtain thtatural
operator decompositioof (5.4) ((1.7) resp.). However, due to (5.5), the Cg-identities for
D, cannot be proven directly by decomposing (5.4). We must go another wstgad of
proving the operator gauge invariance (1.7), we prove the corresponding Cg-identities (by
induction onn), which is a stronger statemenin this framework the Cg-identities fab,
can be proven by means of the Cg-identities fpr 7; at lower orders K k <n — 1.

The Cg-identities for7,, are obtained by collecting all terms in the natural operator
decomposition of (1.7) which belong to a particular combinatiofl : of external field
operators. By doing this the arguments of some field operators must be changed by using
8-distributions, i.e. by applying the simple identity

D Bx)OX) 1 8(xi —x) ... = B(xp)O(X) : 8(x; — xx) ... (5.9
wherex & (xl, X2, ...x,) and O(X) means the external field operators besi@es

We are now able to give a precise definition of the statement that the Cg-identities hold:

we start with the natural operator decomposition of (1.7). Using several times the identity
(5.9), we can obtain an operator decomposition

[0. (O] =1 Y aiT(X) = Y 5:(X) : O;(X) : (5.10)
=1 j

(wheret;(X) is a numerical distribution and O;(X) : a normally ordered combination of
external field operators) which fulfils

7;(X) =0 Vj. (5.11)
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The decomposition (5.10) must be invariant with respect to permutations of the vertices
A Cg-identity is uniquely characterized by its operator combinatiéh:: The terms in
a Cg-identity are singular of order [11]

101 +1 (5.12)
atx = 0, where
Ol=4—-b—g,—gi—d. (5.13)

Here, b, g,, gi are the number of gluons and ghost operaigrs, respectively, inO, and
d is the number of derivatives on these field operators.

There are no pure vacuum diagrams contributing to (1.7), i.e. terms with no external
legs. The disconnected diagrams fulfil the Cg-identities separately. This can be proven
easily by means of the Cg-identities for their connected subdiagrams, which hold by the
induction hypothesis.

Let us consider aonnecteddiagram in the natural operator decomposition of (1.7). We
call it degeneratgif it has at least one vertex with two external legs; otherwise it is called
non-degeneratelLet x; be the degenerate vertex with two external fields, BayB,. Such
a ‘degenerate term’ has the following form

D Bi(x;)Bo(x;)Ba(xj,) ... Br(x),_,) T A(X; — xp)tp—1(X1 — Xpy oo Xj — Xy o X1 — Xp)
(5.14)

wherek #1i, jy #i (VI =1, ..., r—2) and the coordinate with a barin_; must be omitted.

In general, there is a sum of such terms (5.14) belonging to the fixed (degenerate) operator
combination : O :=: By(x;)Ba(x;)B3a(xj,) ... B.(x;_,) . For A(x; — x;) the following
possibilities appear:

(a) A = Dy, 3Dy, 8/.L8UDF (1 #v), a,08;1,81)L)F (L #v#pF W),

(b) A =8@, 38@.

The 36®¥-terms in (b) cancel [15]. If a degenerate term (5.14) with= 5§ (type
(b)) can be transformed in a non-degenerate one by applying (possibly several times) the
identity (5.9) only, we call it-degeneratgif this is not possible we call itruly degenerate
All other degenerate terms (i.e. the terms of type (a)) are called truly degenerate, too.

The truly degenerate terms fulfil the Cg-identities separately, by means of the Cg-
identities for their subdiagramfl 9, section 3.1]. The latter hold by the induction hypothesis.
The exception are some tree diagrams at second and third order, which need an explicit
calculation [19, section 3.2].

There remain the non-degenerate drdkegenerate terms, which are linearly dependent.
Therefore,the §-degenerate terms must be transformed in non-degenerate form by using
(5.9). In this way we obtain completelgew Cg-identities, in contrast to the disconnected
and the truly degenerate Cg-identities, which rely on Cg-identities at lower orders.
Therefore, it is not surprising that the difficult part of the proof of the Cg-identities concerns
the non-degenerate? : (including §-degenerate terms). First, one proves the Cg-identities
of the non-degenerate ardddegenerate terms fot/,, R, (and therefore also foD,) by
means of the Cg-identities at lower orders [19, section 4.1]. In the process of distribution
splitting the Cg-identities can be violated by local terms only which are singular of order
|O| + 1 (5.12), i.e. the possible anomaly has the form

|0]+1
a(xi, ...x,) = Z Cp,DP8* "V (x1 — x,,...). (5.15)
|b|=0
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We see that we only have to consider Cg-identities with
O] > -1 (5.16)

This occurs only for Cg-identities with 2-, 3-, 4-legs and one Cg-identity with 5-legs

(: O :=uAAAA ). For the latter the colour and Lorentz structures exclude an anomaly
(5.15) [15]. For the Cg-identities with 2-, 3- and 4-legs we first restrict the constgnits

the ansatz (5.15) by means of covariance, the SU(N)-invariance and invariance with respect
to permutations of the inner vertices. Then we remove the possible anomaly by finite
renormalizations of the-distributions in the Cg-identity. If a certain distributiorappears

in several Cg-identities, the different normalizationst ahust be compatible. For certain
Cg-identities (O :=: uAA :,: uAAA :,: uuduA :) the removal of the anomaly is only
possible, if one uses additional information about the infrared behaviour of the divergences
with respect to inner vertices [15].

5.3. The madifications of the proof of gauge invariance for arbitrary

Going over to an arbitrary-gauge there are two fundamental changes.

(A) The wave equation for the free gauge fiedfl is replaced by (2.1). However, in the
proof of gauge invariance the equation of motion fyy is used in (5.1) only. Therefore,
by working always with{Q, d,i,} = id"F,,, the modification of the equation of motion
causes no changes in the proof of gauge invariance.

(B) The commutator4,,, A,] (2.15) has an additional-dependent term with the dipole
distribution E. Similar changes appear in the positive and negative frequency part of (2.15),
as well as in the retarded, advanced and Feynman propagator. All other commutators
resp. propagators are independentpk.g. A4, Fpo-]. If we were to work with another
ghost coupling(B1, B2) # (0, 0) the field 3* A, would appear, which has &dependent
commutator withA,

[0" Ay (). Apy ()] = %aabamu _— (5.17)

We now have to check that the explicit form of thel-commutator resp. propagator is not
used in the proof of the Cg-identities.

—Second-order tree diagrams. The explicit form of the propagators is used in the
verification of gauge invariance for the second-order tree diagrams, but gauge invariance can
only be violated by local terms (9)3(x1—x2). The latter can only appear if the propagator
is of singular ordew > —1 (see (5.12)), but thd A-propagator (without derivatives) has
o = —2 and, therefore, plays no role in this calculation. In all other propagators (with
derivatives) the.-dependence drops out because the derivatives occur in the antisymmetric
F, only. Especially, we conclude that the 4-gluon interaction (which is a normalization
term of the second-order tree diagram with external led$x;)A(x1)A(x2)A(x2) @ and is
uniquely fixed by gauge invariance [11,19]) is independerit ahd that it is the only local
term in 7, |iree

—3-degenerate terms. K(x; —x;) in (5.14) originates from an A-propagator (without
derivatives) we know about the singular ordefA) < w([A, A]) + 1 = —1. Therefore,

A # §,98 and the set oB-degenerate terms is unchanged fo# 1. Of course most-
distributions depend oa (due to (2.15)), but we conclude that tBg-identities belonging
to non-degenerateO : (which include thes-degenerate termsre manifestly independent
of A. (This is obvious for the non-degenerate terms.)

—\We turn to the proof of the Cg-identities belonging to non-degener@te for ¢’ and
r’ by means of the Cg-identities at lower orders [19, section 4.1]. There one has to show that
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the operator decomposition oD[ A)] = [Q, 3. T;T,_;] is unchanged if we interchange
the operation @, .] with contracting. For this purpose one needs the explicit form of some
propagators, but thd A-propagator is not used. The non-trivial step is the cancellation of
the terms arising by contracting the commutated leg.

—The same cancellation is used in the proof of the Cg-identities for the truly degenerate
terms by means of the Cg-identities for their subdiagrams [19, section 3.1]. Again the
explicit form of the A A-propagator plays no role.

We emphasize that (A) and (B) are the only relevant changes for arbitraggpecially
the singular order of the numerical distributions (5.12-13) and the symmetries (Lorentz
covariance,SU (N)-invariance, P-, T- and C-invariance, pseudo-unitarity and invariance
with respect to permutations of the vertices) are manifestly independant@dnsequently,
the ansatz (5.15) for the possible anomalies (in the Cg-identities belonging to non-degenerate
: O :) remains the same and the constafisin (5.15) can be restricted in the same way.
Moreover, the normalization polynomials of thelistributions are unchanged and, therefore,
we can use them to remove the anomalies in the same way. Finally, gauge invariance of
third-order tree diagrams, which must be verified explicitly [19, section 3.2] and the proof of
the non-trivial 5-legs Cg-identity [15] rely on th#J (N)-invariance and Lorentz covariance.
Therefore, these parts of the proof also need no change.

Summing up we see that the inductive proof of the Cg-identities is manifestly
independent of. if we choose the ghost couplingy = 0 = B, (5.3) and always work
with F,, instead ofd, A, (5.1).

The coupling to fermionic matter fields (in the fundamental representation) can be
added to this model. Gauge invariance holds true if and only if the coupling constants
agree (universality of charge). This has been carried out in the Feynman gauge in [20].
There are no changes for arbitrary values.of
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Appendix A. Cauchy problem for the iterated wave equation

First we formulate the Cauchy problem for the equation

Cu = (83 — 82 — 82 — 35)%u = 0. (A1)
Since (A.1) is of fourth order in timey = ¢, a complete set of Cauchy datarat O is
given by

(Ogu)(0, ) = u,(x) n=0,1223 (A.2)
For simplicity we assume the, to be in Schwartz space, then the initial-value problem

(A.1), (A.2) has a unique solution. This solution can be constructed by means of the
tempered distribution® (x) and E (x), defined by

OD =0 DO, x)=0 (3D)(0, z) = §3(x) (A.3)
(°E=0 (Q8E)(0,2) =0 n=0,172 (33E) (0, ) = 83(x). (A.4)

D is the well known Pauli-Jordan distribution aAds sometimes called dipole distribution
and we will compute it.
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We now claim that the solution of the Cauchy problem (A.1) and (A.2) is given by

u(x) = / By [D(x — y)ur(y) — 3 D(x — y)uo(y)

+E(x — y)(uz — Aur)(y) — 3 E(x — y)(uz — Auo)(y)] (A.5)

where A denotes the three-dimensional Laplace operator. This formula is the same as the
covariant equation (2.6) which is an obvious generalization of the solution of the ordinary
wave equation. Using (A.3) and (A.4) it is a simple task to verify (A.1) and (A.2). Therefore
it remains for us to construct the dipole distributién

From (A.3) and (A.4) we obtain

OE(x) = D(x) (A.6)

and we want to obtail as solution of this equation. We solve this problem in momentum
space. The Fourier transform &f is well known

. i 5
D(p) = > sgnpod(p7) (A7)
JT
so that
A i
PPE(p) = —5— sgnpod (p?). (A-8)
JT
A solution of this equation can immediately be written down by means of the identity
d
P78 (p?) = a2 (P?8(p) = 8(p*) = —8(p?) (A.9)
namely
. i
E(p) = - sgnpod'(p?). (A.10)
T

By inverse Fourier transform the initial conditions (A.4) can be verified Arid) can be
computed

1 2
E(x) = — sgn(xo)® (x°). (A.11)
87
Note that the positive-frequency part
. i
EN(p) = 5-0(p0)d (p?)
JT

is ill defined. This never occurs in rigorous calculations. Only derivativeB bhve to be
split into positive- and negative-frequency parts (see (1.3)) and these are well defined.

Appendix B

Here we prove the relation (4.14). We start from the orthogonal direct decomposition (4.9)
which can be written as

1=Py+ Py + P (B.1)

where Py and Py+ are projection operators onfeanQ and RanQ+ and P projects on
Hpnys The operator (4.11)

{0,0}=K >0 (B.2)
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is positive self-adjoint on the orthogonal compleméﬁ;ﬂ,yS of Hphys, SO that it has an inverse

KKt =Py+ Py = K 'K KtP=0. (B.3)
This allows us to write (B.1) in the form
1=P+ Q0K 1+ 0tk (B.4)

Now we consider
PT(X)T(X2)P = PT(X))(P + QQYK ™'+ QY QK HT (X P
= PT(X)PT(X2)P + PT(X1)QQ K 1T(Xp)P
+PT(X1)Q+QK_1T(X2)P. (B.5)
Since P Q = 0, the second term is equal to
P[T(X1), Q]QTK'T (X2) P

which is a divergence due to gauge invariance¢X ;).
In the last term in (B.5) we use the fact thitand, hencek —* commute withQ which
follows easily from the definitions (B.2), (4.11) and (4.6). Then we conclude that

PT(X1)QTK QT (X2)P = PT(X1) Q'K '[Q. T(X2)]P
is also a divergence. Consequently,

PT(X)T(X2)P = PT(X1)PT(X2)P + div
which is the desired relation (4.14).
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