Spacecraft Anomalies: An Update

Andreas Aste

Department of Physics
University of Basel

Basel, May 15, 2008
Overview

1. Interplanetary Spaceflight
 - Swing-by
 - Deep Space Network
 - Spacecraft Navigation

2. Prehistory
 - The Pioneer Anomaly

3. Flyby Anomalies in EGAs
 - First Observation
 - Flyby data set

4. Search for Explanations
 - Origin of the Flyby Anomaly
 - Origin of the Pioneer Anomaly

5. Outlook
Swing-By

Swing-by (or flyby, slingshot, gravity assist): A method in interplanetary spaceflight to alter the path (and the speed) of a spacecraft by the use of a planet or other heavy celestial body.

- First planned gravity assist (1973): Deceleration of Mariner 10 by Venus in order to reach a stable orbit around Mercury.
Interplanetary Spaceflight

Swing-By

Swing-by (or flyby, slingshot, gravity assist): A method in interplanetary spaceflight to alter the path (and the speed) of a spacecraft by the use of a planet or other heavy celestial body.

- First planned gravity assist (1973): Deceleration of Mariner 10 by Venus in order to reach a stable orbit around Mercury.

Main advantages

- Higher velocities \rightarrow distant targets can be reached
- Saves fuel, time and expense
- Easy access to orbits far from the ecliptic
- Can be repeated several times

Trajectories of Pioneer 10 & 11
Pioneer Trajectories
Interplanetary Spaceflight

Deep Space Network: Spacecraft Navigation

DSN: International network of communication facilities (large radio antennas) for the support of interplanetary spacecraft missions & radio- and radar astronomy.

3 facilities (distance ~ 120 degrees)

- Goldstone DSN Complex, Mojave Desert, California, USA
- Madrid DSN Complex, Robledo (Madrid), Spain
- Canberra DSN Complex, Tidbinbilla (Canberra), Australia
Deep Space Network

Deep Space Network

Goldstone, California

Canberra, Australia

Goldstone, California

Madrid, Spain

Deep Space Network
Main method for measuring the **longitudinal** velocity of spacecraft: **DOPPLER EFFECT**

Basic strategy (Pioneer)

DSN reference frequency: $$\nu_R = \frac{\nu_E}{\sqrt{\frac{c-v_P}{c+v_P} \nu_E}}$$

Receive frequency: $$\nu_R = \frac{240}{221} \nu_R$$

Response signal from Pioneer: $$\nu'_R = (240/221)\nu_R$$

DSN receive frequency: $$\nu' = \frac{2}{221} \nu_E$$
Spacecraft Navigation

Main method for measuring the **longitudinal** velocity of spacecraft:
DOPPLER EFFECT

Basic strategy (Pioneer)

- **DSN reference frequency:**
 \[\nu_E \]

- **Receive frequency:**
 \[\nu_R = \sqrt{\frac{c-v_P}{c+v_P}} \nu_E \]

- **Response signal from Pioneer:**
 \[\nu'_R = \frac{240}{221} \nu_R \]

- **DSN receive frequency:**
 \[\nu'_E = \sqrt{\frac{c-v_P}{c+v_P}} \nu_R \]

\[\rightarrow \nu_P = \frac{19}{221} - \Delta \nu_E \text{, mit } \Delta \nu_E = \frac{\nu'_E - \nu_E}{\nu_E} \]

\[\text{bzw. } \nu_P = \frac{\nu_E - \nu'_E}{\nu_E + \nu'_E} c \approx \frac{1}{2} \frac{\nu_E - \nu'_{E'}}{\nu_E} c \text{ without frequency turnaround ratio (hard coded).} \]
Mysterious Deceleration of the Pioneer Probes

John Anderson ¹ (Jet propulsion laboratory, Pasadena, Kalifornien):
Anomalous deceleration of Pioneer spacecraft since ∼ 1980 towards the sun (or the earth?).

¹J. D. Anderson, July 1992 Quarterly Report to NASA
Mysterious Deceleration of the Pioneer Probes

John Anderson ¹ (Jet propulsion laboratory, Pasadena, Kalifornien):

Anomalous deceleration of Pioneer spacecraft since ∼ 1980 towards the sun (or the earth ?).

Pioneer 10:
Launch March 2, 1972 / Jupiter flyby Dec 3, 1973
→ hyperbolic orbit, radio contact till Feb 2003.

Pioneer 11:
Launch April 5, 1973 / Jupiter flyby Dec 2, 1974 / Saturn flyby Sept 1, 1979
→ hyperbolic orbit, contact till Nov 1995.

¹J. D. Anderson, July 1992 Quarterly Report to NASA
Mysterious Deceleration of the Pioneer Probes

John Anderson ¹ (Jet propulsion laboratory, Pasadena, Kalifornien):

Anomalous deceleration of Pioneer spacecraft since ∼ 1980 towards the sun (or the earth ?).

Pioneer 10:
Launch March 2, 1972 / Jupiter flyby Dec 3, 1973
→ hyperbolic orbit, radio contact till Feb 2003.

Pioneer 11:
Launch April 5, 1973 / Jupiter flyby Dec 2, 1974 / Saturn flyby Sept 1, 1979
→ hyperbolic orbit, contact till Nov 1995.

Pioneer anomaly

\[\alpha_{\text{Pioneer}} = -(8.74 \pm 1.33) \cdot 10^{-10} \text{ m/s}^2 \]

¹ J. D. Anderson, July 1992 Quarterly Report to NASA
Mysterious Deceleration of the Pioneer Probes

John Anderson ¹ (Jet propulsion laboratory, Pasadena, Kalifornien):
Anomalous deceleration of Pioneer spacecraft since ∼ 1980 towards the sun
(or the earth ?).

Reliable Doppler telemetry data now available for

Pioneer 10:
Launch March 2, 1972 / Jupiter flyby Dec 3, 1973
→ hyperbolic orbit, radio contact till Feb 2003.

Pioneer 11:
Launch April 5, 1973 / Jupiter flyby Dec 2, 1974 / Saturn flyby Sept 1, 1979
→ hyperbolic orbit, contact till Nov 1995.

Pioneer anomaly

\[\alpha_{\text{Pioneer}} = -(8.74 \pm 1.33) \cdot 10^{-10} \text{m/s}^2 \]

Comments

- Anomalies of Pioneer 10/11 coincide within a range of ∼ 3%.
- \(a_{\text{Sun}}(20 \text{ AU}) = 1.48 \cdot 10^{-5} \text{m/s}^2 \).
- Remains a mystery... \(cH_0 \simeq 6.8 \cdot 10^{-10} \text{m/s}^2, \ a_0(MOND) \simeq 1.2 \cdot 10^{-10} \text{m/s}^2. \)

¹ J. D. Anderson, July 1992 Quarterly Report to NASA
Velocity anomaly

![Graph showing Doppler velocity over time]

Days from 1 Jan 1987 00:00:00

Doppler Velocity (m/s)
Pioneer probe design

Weight: 258 kg
Energy source: 4×40 Watt RGT's
(RGT: Radioisotope thermoelectric generator)

Pioneer 10 (final construction stage)
Plutonium 238
RTG Radiation Measurement (Cassini-Huygens)
Soviet RTGs
December 1990: J.D. Anderson and other engineers at JPL observe an anomalous velocity increase of space probe GALILEO by $\Delta v = 3.92$ mm/s during an Earth flyby (EGA, earth gravity assist).

Further EGAs were investigated in the following:

- NEAR ('92): $\Delta v = 13.46$ mm/s
- Cassini ('99): $\Delta v = -2.0$ mm/s
- Rosetta ('05): $\Delta v = 1.8$ mm/s
- MESSENGER ('05): $\Delta v = 0.02$ mm/s
- GALILEO ('92): $\Delta v = -4.6$ mm/s

The accuracy of the DSN velocity measurement is ~ 0.01 mm/s.
December 1990:
J.D. Anderson and other engineers at JPL observe an anomalous velocity increase of space probe GALILEO by $\Delta v = 3.92 \text{ mm/s}$ during an Earth flyby (EGA, earth gravity assist).
December 1990:
J.D. Anderson and other engineers at JPL observe an anomalous velocity increase of space probe GALILEO by $\Delta v = 3.92\, \text{mm/s}$ during an Earth flyby (EGA, earth gravity assist).

Further EGAs were investigated in the following:
December 1990:
J.D. Anderson and other engineers at JPL observe an anomalous velocity increase of space probe GALILEO by $\Delta v = 3.92 \, mm/s$ during an Earth flyby (EGA, earth gravity assist).

Further EGAs were investigated in the following:

- NEAR ('92): $\Delta v = 13.46 \, mm/s$
December 1990:
J.D. Anderson and other engineers at JPL observe an anomalous velocity increase of space probe GALILEO by $\Delta v = 3.92 \text{ mm/s}$ during an Earth flyby (EGA, earth gravity assist).

Further EGAs were investigated in the following:

- NEAR ('92): $\Delta v = 13.46 \text{ mm/s}$
- Cassini ('99): $\Delta v = -2.0 \text{ mm/s}$
Flyby-Anomaly

December 1990:
J.D. Anderson and other engineers at JPL observe an anomalous velocity increase of space probe GALILEO by \(\Delta v = 3.92 \text{ mm/s} \) during an Earth flyby (EGA, earth gravity assist).

Further EGAs were investigated in the following:

- **NEAR ('92):** \(\Delta v = 13.46 \text{ mm/s} \)
- **Cassini ('99):** \(\Delta v = -2.0 \text{ mm/s} \)
- **Rosetta ('05):** \(\Delta v = 1.8 \text{ mm/s} \)
December 1990:
J.D. Anderson and other engineers at JPL observe an anomalous velocity increase of space probe GALILEO by $\Delta v = 3.92 \text{ mm/s}$ during an Earth flyby (EGA, earth gravity assist).

Further EGAs were investigated in the following:

- NEAR ('92): $\Delta v = 13.46 \text{ mm/s}$
- Cassini ('99): $\Delta v = -2.0 \text{ mm/s}$
- Rosetta ('05): $\Delta v = 1.8 \text{ mm/s}$
- MESSENGER ('05): $\Delta v = 0.02 \text{ mm/s}$
December 1990:
J.D. Anderson and other engineers at JPL observe an anomalous velocity increase of space probe GALILEO by $\Delta v = 3.92 \text{ mm/s}$ during an Earth flyby (EGA, earth gravity assist).

Further EGAs were investigated in the following:

- NEAR ('92): $\Delta v = 13.46 \text{ mm/s}$
- Cassini ('99): $\Delta v = -2.0 \text{ mm/s}$
- Rosetta ('05): $\Delta v = 1.8 \text{ mm/s}$
- MESSENGER ('05): $\Delta v = 0.02 \text{ mm/s}$
- GALILEO ('92): $\Delta v = -4.6 \text{ mm/s}$ (!)
Flyby-Anomaly

December 1990:
J.D. Anderson and other engineers at JPL observe an anomalous velocity increase of space probe GALILEO by $\Delta v = 3.92 \text{ mm/s}$ during an Earth flyby (EGA, earth gravity assist).

Further EGAs were investigated in the following:

- NEAR ('92): $\Delta v = 13.46 \text{ mm/s}$
- Cassini ('99): $\Delta v = -2.0 \text{ mm/s}$
- Rosetta ('05): $\Delta v = 1.8 \text{ mm/s}$
- MESSENGER ('05): $\Delta v = 0.02 \text{ mm/s}$
- GALILEO ('92): $\Delta v = -4.6 \text{ mm/s}$ (!)

The **accuracy** of the DSN velocity measurement is $\sim 0.01 \text{ mm/s}$.
December 1990:
J.D. Anderson and other engineers at JPL observe an anomalous velocity increase of space probe GALILEO by $\Delta v = 3.92 \text{ mm/s}$ during an Earth flyby (EGA, earth gravity assist).

Further EGAs were investigated in the following:

- NEAR ('92): $\Delta v = 13.46 \text{ mm/s}$
- Cassini ('99): $\Delta v = -2.0 \text{ mm/s}$
- Rosetta ('05): $\Delta v = 1.8 \text{ mm/s}$
- MESSENGER ('05): $\Delta v = 0.02 \text{ mm/s}$
- GALILEO ('92): $\Delta v = -4.6 \text{ mm/s}$ (!)

The accuracy of the DSN velocity measurement is $\sim 0.01 \text{ mm/s}$.
The Hyperbolic Trajectory: Only an Approximation

Orbit determination of probes is a non-trivial task. Currently, four independent codes are in use:

- JPL Orbit determination Program (various versions from 1970-2001)
- Goddard Space Flight Center: A study in 2003
- Orbit determination code from the University of Oslo
The Hyperbolic Trajectory: Only an Approximation

Orbit determination of probes is a non-trivial task. Currently, four independent codes are in use:

- JPL Orbit determination Program (various versions from 1970-2001)
- Goddard Space Flight Center: A study in 2003
- Orbit determination code from the University of Oslo

These programs, e.g., take into account:

- Parametrized post-Newtonian gravity effects of the Sun/Moon/Planets/large asteroids/ terrestrial and lunar figure (multipole) effects/earth tides/lunar librations
- Solar radiation, Solar wind pressure, interplanetary dust
- Spacecraft: Thermal radiation, gas leakage (after correction maneuvers), torques
- Observation stations: Precession, nutation, sidereal rotation, polar motion, tidal effects, tectonic plate drift, models of DSN antennae.
- Signal propagation: Dispersion effects due to Solar wind and interplanetary dust.
TABLE I. Earth flyby parameters at closest approach for Galileo, NEAR, Cassini, Rosetta, and MESSENGER (M'GER) spacecraft. The altitude H is referenced to an Earth geoid, the geocentric latitude ϕ and longitude λ are listed for the closest approach location, V_f is the inertial spacecraft velocity at closest approach, V_∞ is the osculating hyperbolic excess velocity, the deflection angle (DA) is the angle between the incoming and outgoing asymptotic velocity vectors, the angle I is the inclination of the orbital plane on the Earth's equator, the next four rows represent the right ascension α and declination δ of the incoming (i) and outgoing (o) osculating asymptotic velocity vectors, and M_{SC} is a best estimate of the total mass of the spacecraft during the encounter. The last three rows of the table give the measured change in V_∞, the estimated realistic error in V_∞, and the prediction of ΔV_∞ by Eq. (1). The measured ΔV_∞ for GLL-II is actually -8 mm/s, but it is reduced in magnitude after subtracting out an estimated atmospheric drag of -3.4 mm/s.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>GLL-I</th>
<th>GLL-II</th>
<th>NEAR</th>
<th>Cassini</th>
<th>Rosetta</th>
<th>M'GER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>12/8/90</td>
<td>12/8/92</td>
<td>1/23/98</td>
<td>8/18/99</td>
<td>3/4/05</td>
<td>8/2/05</td>
</tr>
<tr>
<td>H (km)</td>
<td>960</td>
<td>303</td>
<td>539</td>
<td>1175</td>
<td>1956</td>
<td>2347</td>
</tr>
<tr>
<td>ϕ (deg)</td>
<td>25.2</td>
<td>-33.8</td>
<td>33.0</td>
<td>-23.5</td>
<td>20.20</td>
<td>46.95</td>
</tr>
<tr>
<td>λ (deg)</td>
<td>296.5</td>
<td>354.4</td>
<td>47.2</td>
<td>231.4</td>
<td>246.8</td>
<td>107.5</td>
</tr>
<tr>
<td>V_∞ (km/s)</td>
<td>8.949</td>
<td>8.877</td>
<td>6.851</td>
<td>16.010</td>
<td>3.863</td>
<td>4.056</td>
</tr>
<tr>
<td>DA (deg)</td>
<td>47.7</td>
<td>51.1</td>
<td>66.9</td>
<td>9.7</td>
<td>99.3</td>
<td>94.7</td>
</tr>
<tr>
<td>I (deg)</td>
<td>142.9</td>
<td>138.7</td>
<td>108.0</td>
<td>25.4</td>
<td>144.9</td>
<td>133.1</td>
</tr>
<tr>
<td>α_i (deg)</td>
<td>266.76</td>
<td>219.35</td>
<td>261.17</td>
<td>334.31</td>
<td>346.12</td>
<td>292.61</td>
</tr>
<tr>
<td>δ_i (deg)</td>
<td>-12.52</td>
<td>-34.26</td>
<td>-20.76</td>
<td>-12.92</td>
<td>-2.81</td>
<td>31.44</td>
</tr>
<tr>
<td>α_o (deg)</td>
<td>219.97</td>
<td>174.35</td>
<td>183.49</td>
<td>352.54</td>
<td>246.51</td>
<td>227.17</td>
</tr>
<tr>
<td>δ_o (deg)</td>
<td>-34.15</td>
<td>-4.87</td>
<td>-71.96</td>
<td>-4.99</td>
<td>-34.29</td>
<td>-31.92</td>
</tr>
<tr>
<td>M_{SC} (kg)</td>
<td>2497</td>
<td>2497</td>
<td>730</td>
<td>4612</td>
<td>2895</td>
<td>1086</td>
</tr>
<tr>
<td>ΔV_∞ (mm/s)</td>
<td>3.92</td>
<td>-4.6</td>
<td>13.46</td>
<td>-2</td>
<td>1.80</td>
<td>0.02</td>
</tr>
<tr>
<td>$\sigma_{\Delta V_\infty}$ (mm/s)</td>
<td>0.3</td>
<td>1.0</td>
<td>0.01</td>
<td>1</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>Equation (1) (mm/s)</td>
<td>4.12</td>
<td>-4.67</td>
<td>13.28</td>
<td>-1.07</td>
<td>2.07</td>
<td>0.06</td>
</tr>
</tbody>
</table>

(J. D. Anderson, J. K. Campbell, J. E. Eklund, J. Ellis, J. F. Jordan @ JPL)
Anderson’s collaborator James Jordan conjectured a connection between the rotation of the earth and the velocity increase.

The ansatz is

$$v = \frac{1}{2} E = K (\cos \delta_i - \cos \delta_0),$$

$$K = 2 \omega ERc = 3 \cdot 10^{-6}.$$
Anderson’s collaborator James Jordan conjectured a connection between the rotation of the earth and the velocity increase.

The ansatz is

\[\frac{\Delta v}{v} = \frac{1}{2} \frac{\Delta E}{E} = K(\cos \delta_i - \cos \delta_0), \]

\[K = \frac{2\omega_E R_E}{c} = 3.1 \cdot 10^{-6}. \]
Anderson’s collaborator James Jordan conjectured a connection between the rotation of the earth and the velocity increase.

The ansatz is

\[
\frac{\Delta v}{v} = \frac{1}{2} \frac{\Delta E}{E} = K (\cos \delta_i - \cos \delta_0),
\]

\[
K = \frac{2 \omega_E R_E}{c} = 3.1 \cdot 10^{-6}.
\]

Based on this ansatz, Anderson et al. predicted a velocity increase of 1 mm/s for the Rosetta flyby on November 13, 2007.
Anderson’s collaborator James Jordan conjectured a connection between the rotation of the earth and the velocity increase.

The ansatz is

\[
\frac{\Delta v}{v} = \frac{1}{2} \frac{\Delta E}{E} = K(\cos \delta_i - \cos \delta_0),
\]

\[
K = \frac{2\omega_E R_E}{c} = 3.1 \cdot 10^{-6}.
\]

Based on this ansatz, Anderson et al. predicted a velocity increase of 1\(\text{mm/s}\) for the Rosetta flyby on November 13, 2007.

Just recently, data analysis revealed that the Rosetta flyby was compatible with an absent anomaly.
Anderson’s collaborator James Jordan conjectured a connection between the rotation of the earth and the velocity increase.

The ansatz is

\[
\frac{\Delta v}{v} = \frac{1}{2} \frac{\Delta E}{E} = K (\cos \delta_i - \cos \delta_0),
\]

\[
K = \frac{2 \omega_E R_E}{c} = 3.1 \cdot 10^{-6}.
\]

Based on this ansatz, Anderson et al. predicted a velocity increase of 1\text{mm/s} for the Rosetta flyby on November 13, 2007.

Just recently, data analysis revealed that the Rosetta flyby was compatible with an absent anomaly.

Now the JPL engineers await the next Rosetta flyby in 2009...
A strange behavior

- The anomalous acceleration occurring in Earth flybys is of the order of $10^{-4} \, m/s^2$ - much larger than the Pioneer anomaly.
- Acceleration phase seems to last only some few minutes.
- Standard error analysis (atmosphere / ocean tides / solid earth tides / charging of the spacecraft / magnetic moment / earth albedo / solar wind ...) gives no hint to the origin of the anomaly.
- No consistent explanations from "new physics" (modifications of relativity etc) yet.

Modeled anomalous acceleration
Flyby acceleration mismatch

![Graph](image.png)
Search for Explanations: Pioneer Anomaly

THE STUDY OF THE PIONEER ANOMALY
Focus of the 1995-2002 Analysis

- On-board systematic & other hardware-related mechanisms:
 - Precessional attitude control maneuvers and associated "gas leaks"
 - Nominal thermal radiation due to ^{238}Pu decay [half life 87.75 years]
 - Heat rejection mechanisms from within the spacecraft
 - Hardware problems at the DSN tracking stations

- Examples of the external effects (used GLL, ULY, and Cassini):
 - Solar radiation pressure, solar wind, interplanetary medium, dust
 - Viscous drag force due to mass distribution in the outer solar system
 - Gravity from the Kuiper belt; gravity from the Galaxy
 - Gravity from Dark Matter distributed in halo around the solar system
 - Errors in the planetary ephemeris, in the Earth’s Orientation, precession, polar motion, and nutation parameters

- Phenomenological time models:
 - Drifting clocks, quadratic time augmentation, uniform carrier frequency drift, effect due to finite speed of gravity, and many others

- All the above were rejected as explanations

Most of the systematics are time or/and space dependent!
Sources of Systematic Error: External

<table>
<thead>
<tr>
<th>Error budget constituents</th>
<th>Bias 10^{-10} m/s²</th>
<th>Uncertainty 10^{-10} m/s²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sources of external systematic error:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>➤ Solar radiation pressure</td>
<td></td>
<td>± 0.001</td>
</tr>
<tr>
<td>➤ From the mass uncertainty</td>
<td>+0.03</td>
<td>± 0.01</td>
</tr>
<tr>
<td>➤ Solar wind contribution</td>
<td>± < 10^{-5}</td>
<td></td>
</tr>
<tr>
<td>➤ Effects of the solar corona</td>
<td>± 0.02</td>
<td></td>
</tr>
<tr>
<td>➤ Electro-magnetic Lorentz forces</td>
<td>± < 10^{-1}</td>
<td></td>
</tr>
<tr>
<td>➤ Influence of the Kuiper belt’s gravity</td>
<td>± 0.03</td>
<td></td>
</tr>
<tr>
<td>➤ Influence of the Earth orientation</td>
<td>± 0.001</td>
<td></td>
</tr>
<tr>
<td>➤ DSN Antennae: mechanical/phase stability</td>
<td>± < 0.001</td>
<td></td>
</tr>
<tr>
<td>➤ Phase stability and clocks</td>
<td>± < 0.001</td>
<td></td>
</tr>
<tr>
<td>➤ DSN station location</td>
<td>± < 10^{-5}</td>
<td></td>
</tr>
<tr>
<td>➤ Effects of troposphere and ionosphere</td>
<td>± < 0.001</td>
<td></td>
</tr>
<tr>
<td>2 Computational systematics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>➤ Numerical stability of least-squares estimation</td>
<td>± 0.02</td>
<td></td>
</tr>
<tr>
<td>➤ Accuracy of consistency/model tests</td>
<td>± 0.13</td>
<td></td>
</tr>
<tr>
<td>➤ Mismodeling of maneuvers</td>
<td>± 0.01</td>
<td></td>
</tr>
<tr>
<td>➤ Mismodeling of the solar corona</td>
<td>± 0.02</td>
<td></td>
</tr>
<tr>
<td>➤ Annual/diurnal terms</td>
<td>± 0.32</td>
<td></td>
</tr>
</tbody>
</table>

IJMP A 17 (2002) 875-885, gr-qc/0107022

An interesting set of error sources, but not of a major concern!
Sources of Systematic Error: On-board

<table>
<thead>
<tr>
<th>Error budget constituents</th>
<th>Bias 10^{-10} m/s2</th>
<th>Uncertainty 10^{-10} m/s2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio beam reaction force</td>
<td>+1.10</td>
<td>± 0.11</td>
</tr>
<tr>
<td>Thermal/propulsion effects from RTGs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTG heat reflected off the craft</td>
<td>-0.55</td>
<td>± 0.55</td>
</tr>
<tr>
<td>Differential emissivity of the RTGs</td>
<td></td>
<td>± 0.85</td>
</tr>
<tr>
<td>Non-isotropic radiative cooling of s/c</td>
<td></td>
<td>± 0.16</td>
</tr>
<tr>
<td>Expelled He produced within the RTGs</td>
<td>+0.15</td>
<td>± 0.16</td>
</tr>
<tr>
<td>Propulsive mass expulsion: gas leakage</td>
<td></td>
<td>± 0.56</td>
</tr>
<tr>
<td>Variation between s/c determinations</td>
<td>+0.17</td>
<td>± 0.17</td>
</tr>
</tbody>
</table>

SNAP-19 RTG

Heat is an important source, but:
- It is NOT strong enough to explain the anomaly;
- Exponential decay or linear decrease – NOT seen

Graph

- **1987 [97 W]**
- **1998.8 [65 W]**
- **2001**

Legend

- **SNAP-19 RTG**
- **Years**
 - 1975
 - 1980
 - 1985
 - 1990
 - 1995

Note

- **~32.8% reduction**
Four Main Objectives:

- Analysis of the early trajectory:
 - Direction of the anomaly: origin
- Analysis of planetary encounters:
 - Should tell more about the onset of the anomaly (e.g. Pioneer 11)
- Analysis of the entire dataset:
 - Temporal evolution of the anomaly
- Focus on on-board systematics:
 - Thermal modeling using telemetry

- Towards the Sun: gravitational models?
- Towards the Earth: frequency standards?
- Along the velocity vector: drag or inertia?
- Along the spin axis: internal systematics?
In **2006**, Slava Turyshhev (a codiscoverer of the Pioneer anomaly) and Victor Toth (programmer at JPL) started a data recovery program.

Statistics: ~400 tapes... 90 minutes / tape
Preliminary result Turyshev & Toth: The thermal recoil force may explain 28-36% of the Pioneer anomaly...
Preliminary result Turyshev & Toth:
The thermal recoil force may explain 28-36% of the Pioneer anomaly...
Preliminary result Turyshev & Toth:
The thermal recoil force may explain 28-36% of the Pioneer anomaly...

Turyshev: "It's like being on CSI".
Outlook

A MISSION TO EXPLORE THE PIONEER ANOMALY
Measurement Concept: Formation-flying

- Active spacecraft and passive test-mass
- Objective: accurate tracking of the test-mass
- 2-step tracking: common-mode noise rejection
 - Radio: Earth → spacecraft
 - Laser: spacecraft → test-mass
- Flexible formation: distance may vary
- The test mass is at an environmentally quiet distance from the craft, > 250 m
- Occasional maneuvers to maintain formation
Anomaly mission
Interplanetary Spaceflight Prehistory Flyby Anomalies in EGAs Search for Explanations Outlook

John Anderson

Spacecraft Anomalies: An Update